Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 48 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 5.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 5.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t3 + t2 − t + 1) |
| (t + 1)2 · (t − 1)5 · (t2 + 1) |
- The a-invariants are -∞,-∞,-5,-5,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 17 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- c_2_4, a Duflot regular element of degree 2
- a_3_7, a nilpotent element of degree 3
- b_3_6, an element of degree 3
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_4_10, an element of degree 4
- b_4_15, an element of degree 4
- b_4_16, an element of degree 4
- c_4_19, a Duflot regular element of degree 4
- b_5_29, an element of degree 5
- b_5_33, an element of degree 5
- b_6_39, an element of degree 6
Ring relations
There are 86 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·b_1_1
- b_2_1·a_1_0
- b_2_2·a_1_0
- b_2_3·a_1_0
- b_2_22 + c_2_4·b_1_12
- a_1_0·a_3_7
- b_1_1·a_3_7
- a_1_0·b_3_6
- a_1_0·b_3_8
- a_1_0·b_3_9
- b_1_1·b_3_9 + b_2_1·b_2_2
- b_2_1·a_3_7
- b_2_2·a_3_7
- b_2_2·b_3_9 + b_2_1·c_2_4·b_1_1
- b_4_10·a_1_0
- b_4_10·b_1_1 + b_2_2·b_3_6
- b_4_15·a_1_0
- b_4_15·b_1_1 + b_2_2·b_3_8
- b_4_16·a_1_0
- b_4_16·b_1_1 + b_2_3·b_3_6 + b_2_32·b_1_1 + b_2_1·b_3_8
- a_3_72
- a_3_7·b_3_6
- b_3_62 + b_1_13·b_3_8 + b_2_1·b_1_1·b_3_6 + b_2_1·b_2_3·b_1_12 + b_2_13
- a_3_7·b_3_8
- a_3_7·b_3_9
- b_3_92 + b_2_12·c_2_4
- b_3_82 + b_2_3·b_1_1·b_3_8 + b_2_1·b_2_32 + c_4_19·b_1_12
- b_3_6·b_3_9 + b_2_1·b_4_10
- b_2_2·b_4_10 + c_2_4·b_1_1·b_3_6
- b_3_8·b_3_9 + b_2_1·b_4_15
- b_2_2·b_4_15 + c_2_4·b_1_1·b_3_8
- b_3_8·b_3_9 + b_2_3·b_4_10 + b_2_2·b_4_16 + b_2_2·b_2_32
- a_1_0·b_5_29
- b_3_6·b_3_8 + b_1_1·b_5_29 + b_2_3·b_1_1·b_3_8 + b_2_3·b_1_1·b_3_6 + b_2_12·b_2_3
- a_1_0·b_5_33
- b_3_8·b_3_9 + b_1_1·b_5_33 + b_2_3·b_4_10 + b_2_1·b_2_2·b_2_3
- b_4_10·a_3_7
- b_4_10·b_3_6 + b_2_2·b_1_12·b_3_8 + b_2_1·b_2_2·b_3_6 + b_2_1·b_2_2·b_2_3·b_1_1
+ b_2_12·b_3_9
- b_4_10·b_3_9 + b_2_1·c_2_4·b_3_6
- b_4_15·a_3_7
- b_4_15·b_3_6 + b_4_10·b_3_8
- b_4_15·b_3_8 + b_2_32·b_3_9 + b_2_2·b_2_3·b_3_8 + b_2_2·c_4_19·b_1_1
- b_4_15·b_3_9 + b_2_1·c_2_4·b_3_8
- b_4_16·a_3_7 + b_2_32·a_3_7
- b_4_16·b_3_6 + b_2_3·b_1_12·b_3_8 + b_2_32·b_3_6 + b_2_1·b_5_29 + b_2_1·b_2_3·b_3_8
+ b_2_1·b_2_32·b_1_1
- b_4_16·b_3_8 + b_2_3·b_5_29 + b_2_32·b_3_6 + b_2_1·b_2_3·b_3_8 + b_2_1·c_4_19·b_1_1
- b_4_10·b_3_8 + b_2_2·b_5_29 + b_2_2·b_2_3·b_3_8 + b_2_2·b_2_3·b_3_6 + b_2_1·b_2_3·b_3_9
- b_4_16·b_3_9 + b_2_32·b_3_9 + b_2_1·b_5_33 + b_2_1·b_2_3·b_3_9
- b_2_2·b_5_33 + b_2_3·c_2_4·b_3_6 + b_2_1·c_2_4·b_3_8 + b_2_1·b_2_3·c_2_4·b_1_1
- b_6_39·a_1_0
- b_6_39·b_1_1 + b_4_10·b_3_8 + b_2_1·b_2_3·b_3_9
- b_4_102 + c_2_4·b_1_13·b_3_8 + b_2_1·c_2_4·b_1_1·b_3_6 + b_2_1·b_2_3·c_2_4·b_1_12
+ b_2_13·c_2_4
- b_4_152 + b_2_3·c_2_4·b_1_1·b_3_8 + b_2_1·b_2_32·c_2_4 + c_2_4·c_4_19·b_1_12
- b_4_162 + b_2_32·b_1_1·b_3_8 + b_2_34 + b_2_1·b_2_3·b_4_16 + b_2_12·c_4_19
- a_3_7·b_5_29
- b_3_6·b_5_29 + b_2_3·b_1_1·b_5_29 + b_2_32·b_1_1·b_3_8 + b_2_32·b_1_1·b_3_6
+ b_2_1·b_1_1·b_5_29 + b_2_12·b_4_16 + c_4_19·b_1_14
- b_3_8·b_5_29 + b_2_32·b_1_1·b_3_8 + b_2_1·b_2_3·b_4_16 + c_4_19·b_1_1·b_3_6
+ b_2_3·c_4_19·b_1_12
- b_3_9·b_5_29 + b_4_10·b_4_16 + b_2_2·b_2_3·b_1_1·b_3_8 + b_2_2·b_2_3·b_4_16
+ b_2_2·b_2_33 + b_2_1·b_2_2·b_2_32
- b_4_10·b_4_15 + c_2_4·b_1_1·b_5_29 + b_2_3·c_2_4·b_1_1·b_3_8 + b_2_3·c_2_4·b_1_1·b_3_6
+ b_2_12·b_2_3·c_2_4
- a_3_7·b_5_33
- b_3_6·b_5_33 + b_4_10·b_4_16 + b_2_2·b_2_3·b_4_16 + b_2_2·b_2_33 + b_2_1·b_2_3·b_4_15
+ b_2_1·b_2_2·b_4_16 + b_2_1·b_2_2·b_2_32 + b_2_12·b_4_15
- b_3_8·b_5_33 + b_4_15·b_4_16 + b_2_32·b_4_15 + b_2_1·b_2_3·b_4_15
- b_3_9·b_5_33 + b_2_1·c_2_4·b_4_16 + b_2_1·b_2_32·c_2_4 + b_2_12·b_2_3·c_2_4
- b_4_10·b_4_16 + b_2_2·b_2_3·b_1_1·b_3_8 + b_2_2·b_2_3·b_4_16 + b_2_2·b_2_33
+ b_2_1·b_6_39 + b_2_1·b_2_3·b_4_15 + b_2_1·b_2_2·b_4_16 + b_2_12·b_4_15
- b_4_15·b_4_16 + b_2_3·b_6_39 + b_2_32·b_4_15 + b_2_1·b_2_3·b_4_15 + b_2_1·b_2_2·c_4_19
- b_4_10·b_4_15 + b_2_2·b_6_39 + b_2_12·b_2_3·c_2_4
- b_4_16·b_5_29 + b_2_33·b_3_8 + b_2_33·b_3_6 + b_2_1·b_2_3·b_5_29 + b_2_1·b_2_32·b_3_8
+ b_2_3·c_4_19·b_1_13 + b_2_1·c_4_19·b_3_6 + b_2_1·b_2_3·c_4_19·b_1_1
- b_4_15·b_5_33 + b_2_3·c_2_4·b_5_29 + b_2_32·c_2_4·b_3_8 + b_2_32·c_2_4·b_3_6
+ b_2_1·c_2_4·c_4_19·b_1_1
- b_4_10·b_5_29 + b_2_2·b_2_3·b_5_29 + b_2_2·b_2_32·b_3_8 + b_2_2·b_2_32·b_3_6
+ b_2_1·b_2_32·b_3_9 + b_2_1·b_2_2·b_5_29 + b_2_12·b_5_33 + b_2_12·b_2_3·b_3_9 + b_2_2·c_4_19·b_1_13
- b_4_15·b_5_29 + b_2_33·b_3_9 + b_2_2·b_2_32·b_3_8 + b_2_1·b_2_3·b_5_33
+ b_2_1·b_2_32·b_3_9 + b_2_2·c_4_19·b_3_6 + b_2_2·b_2_3·c_4_19·b_1_1
- b_4_10·b_5_33 + b_2_3·c_2_4·b_1_12·b_3_8 + b_2_1·c_2_4·b_5_29
+ b_2_1·b_2_3·c_2_4·b_3_8 + b_2_1·b_2_3·c_2_4·b_3_6 + b_2_1·b_2_32·c_2_4·b_1_1
- b_4_16·b_5_33 + b_2_32·b_5_33 + b_2_33·b_3_9 + b_2_2·b_2_32·b_3_8
+ b_2_1·c_4_19·b_3_9
- b_6_39·a_3_7
- b_6_39·b_3_6 + b_4_10·b_5_29 + b_2_2·b_2_3·b_5_29 + b_2_2·b_2_3·b_1_12·b_3_8
+ b_2_2·b_2_32·b_3_8 + b_2_2·b_2_32·b_3_6 + b_2_1·b_2_32·b_3_9 + b_2_1·b_2_2·b_2_3·b_3_6 + b_2_1·b_2_2·b_2_32·b_1_1 + b_2_12·b_2_3·b_3_9
- b_6_39·b_3_8 + b_4_15·b_5_29 + b_2_33·b_3_9 + b_2_2·b_2_3·b_5_29 + b_2_2·b_2_32·b_3_6
+ b_2_1·b_2_32·b_3_9 + b_2_2·b_2_3·c_4_19·b_1_1
- b_6_39·b_3_9 + b_2_1·c_2_4·b_5_29 + b_2_1·b_2_3·c_2_4·b_3_8 + b_2_1·b_2_3·c_2_4·b_3_6
- b_5_292 + b_2_33·b_1_1·b_3_8 + b_2_1·b_2_3·b_1_1·b_5_29 + b_2_1·b_2_32·b_1_1·b_3_8
+ b_2_1·b_2_34 + b_2_12·b_2_3·b_4_16 + c_4_19·b_1_13·b_3_8 + b_2_3·c_4_19·b_1_14 + b_2_32·c_4_19·b_1_12 + b_2_1·c_4_19·b_1_1·b_3_6 + b_2_1·b_2_3·c_4_19·b_1_12 + b_2_13·c_4_19
- b_5_332 + b_2_32·c_2_4·b_1_1·b_3_8 + b_2_1·b_2_3·c_2_4·b_4_16
+ b_2_12·b_2_32·c_2_4 + b_2_12·c_2_4·c_4_19
- b_4_15·b_6_39 + b_2_3·c_2_4·b_1_1·b_5_29 + b_2_32·c_2_4·b_1_1·b_3_8
+ b_2_32·c_2_4·b_1_1·b_3_6 + b_2_1·b_2_3·c_2_4·b_4_16 + b_2_1·b_2_33·c_2_4 + b_2_12·b_2_32·c_2_4 + c_2_4·c_4_19·b_1_1·b_3_6
- b_5_29·b_5_33 + b_2_32·b_6_39 + b_2_1·b_2_32·b_4_15 + b_2_2·b_2_3·c_4_19·b_1_12
+ b_2_1·b_4_10·c_4_19 + b_2_1·b_2_2·b_2_3·c_4_19
- b_4_10·b_6_39 + b_2_3·c_2_4·b_1_13·b_3_8 + b_2_1·c_2_4·b_1_1·b_5_29
+ b_2_1·b_2_3·c_2_4·b_1_1·b_3_6 + b_2_1·b_2_32·c_2_4·b_1_12 + b_2_12·c_2_4·b_4_16 + b_2_12·b_2_32·c_2_4 + b_2_13·b_2_3·c_2_4 + c_2_4·c_4_19·b_1_14
- b_5_29·b_5_33 + b_4_16·b_6_39 + b_2_2·b_2_32·b_1_1·b_3_8 + b_2_1·b_2_2·b_2_33
+ b_2_1·b_2_2·b_2_3·c_4_19
- b_6_39·b_5_33 + b_2_32·c_2_4·b_1_12·b_3_8 + b_2_1·b_2_3·c_2_4·b_5_29
+ b_2_1·b_2_32·c_2_4·b_3_6 + b_2_1·b_2_33·c_2_4·b_1_1 + b_2_3·c_2_4·c_4_19·b_1_13 + b_2_1·c_2_4·c_4_19·b_3_6
- b_6_39·b_5_29 + b_2_2·b_2_32·b_5_29 + b_2_2·b_2_33·b_3_8 + b_2_2·b_2_33·b_3_6
+ b_2_1·b_2_32·b_5_33 + b_2_1·b_2_33·b_3_9 + b_2_1·b_2_2·b_2_32·b_3_8 + b_2_2·c_4_19·b_1_12·b_3_8 + b_2_2·b_2_3·c_4_19·b_3_6 + b_2_1·b_2_2·c_4_19·b_3_6 + b_2_1·b_2_2·b_2_3·c_4_19·b_1_1 + b_2_12·c_4_19·b_3_9
- b_6_392 + b_2_32·c_2_4·b_1_13·b_3_8 + b_2_1·b_2_3·c_2_4·b_1_1·b_5_29
+ b_2_1·b_2_32·c_2_4·b_1_1·b_3_8 + b_2_1·b_2_32·c_2_4·b_1_1·b_3_6 + b_2_1·b_2_33·c_2_4·b_1_12 + b_2_12·b_2_3·c_2_4·b_4_16 + b_2_13·b_2_32·c_2_4 + c_2_4·c_4_19·b_1_13·b_3_8 + b_2_3·c_2_4·c_4_19·b_1_14 + b_2_1·c_2_4·c_4_19·b_1_1·b_3_6 + b_2_1·b_2_3·c_2_4·c_4_19·b_1_12 + b_2_13·c_2_4·c_4_19
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- However, the last relation was already found in degree 12 and the last generator in degree 6.
- The following is a filter regular homogeneous system of parameters:
- c_2_4, a Duflot regular element of degree 2
- c_4_19, a Duflot regular element of degree 4
- b_1_1·b_3_8 + b_1_14 + b_2_32 + b_2_12, an element of degree 4
- b_1_13·b_3_8 + b_2_32·b_1_12 + b_2_1·b_1_1·b_3_8 + b_2_1·b_2_32 + b_2_12·b_1_12, an element of degree 6
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 1, 5, 11, 13].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- c_2_4 → c_1_02, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_10 → 0, an element of degree 4
- b_4_15 → 0, an element of degree 4
- b_4_16 → 0, an element of degree 4
- c_4_19 → c_1_14, an element of degree 4
- b_5_29 → 0, an element of degree 5
- b_5_33 → 0, an element of degree 5
- b_6_39 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_2_1 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- b_2_2 → c_1_0·c_1_2, an element of degree 2
- b_2_3 → c_1_42 + c_1_3·c_1_4 + c_1_2·c_1_4 + c_1_1·c_1_2, an element of degree 2
- c_2_4 → c_1_02, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_3_6 → c_1_33 + c_1_2·c_1_3·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_22, an element of degree 3
- b_3_8 → c_1_3·c_1_42 + c_1_32·c_1_4 + c_1_2·c_1_3·c_1_4 + c_1_12·c_1_2, an element of degree 3
- b_3_9 → c_1_0·c_1_32 + c_1_0·c_1_2·c_1_3, an element of degree 3
- b_4_10 → c_1_0·c_1_33 + c_1_0·c_1_2·c_1_3·c_1_4 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_1·c_1_22, an element of degree 4
- b_4_15 → c_1_0·c_1_3·c_1_42 + c_1_0·c_1_32·c_1_4 + c_1_0·c_1_2·c_1_3·c_1_4
+ c_1_0·c_1_12·c_1_2, an element of degree 4
- b_4_16 → c_1_44 + c_1_3·c_1_43 + c_1_32·c_1_42 + c_1_33·c_1_4 + c_1_22·c_1_42
+ c_1_22·c_1_3·c_1_4 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_42 + c_1_1·c_1_22·c_1_4 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- c_4_19 → c_1_1·c_1_3·c_1_42 + c_1_1·c_1_32·c_1_4 + c_1_1·c_1_2·c_1_3·c_1_4
+ c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_4 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_2 + c_1_14, an element of degree 4
- b_5_29 → c_1_3·c_1_44 + c_1_32·c_1_43 + c_1_33·c_1_42 + c_1_34·c_1_4
+ c_1_2·c_1_3·c_1_43 + c_1_2·c_1_33·c_1_4 + c_1_22·c_1_3·c_1_42 + c_1_22·c_1_32·c_1_4 + c_1_23·c_1_3·c_1_4 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_42 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_4 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_42 + c_1_12·c_1_22·c_1_4 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23, an element of degree 5
- b_5_33 → c_1_0·c_1_3·c_1_43 + c_1_0·c_1_32·c_1_42 + c_1_0·c_1_2·c_1_3·c_1_42
+ c_1_0·c_1_1·c_1_33 + c_1_0·c_1_1·c_1_2·c_1_42 + c_1_0·c_1_1·c_1_2·c_1_32 + c_1_0·c_1_1·c_1_22·c_1_4 + c_1_0·c_1_12·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_22, an element of degree 5
- b_6_39 → c_1_0·c_1_32·c_1_43 + c_1_0·c_1_33·c_1_42 + c_1_0·c_1_2·c_1_32·c_1_42
+ c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_2·c_1_3·c_1_42 + c_1_0·c_1_1·c_1_2·c_1_32·c_1_4 + c_1_0·c_1_1·c_1_22·c_1_3·c_1_4 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_33 + c_1_0·c_1_12·c_1_2·c_1_3·c_1_4 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_22, an element of degree 6
|