Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 51 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_4_5, a nilpotent element of degree 4
- a_5_9, a nilpotent element of degree 5
- a_5_10, a nilpotent element of degree 5
- a_6_9, a nilpotent element of degree 6
- a_7_16, a nilpotent element of degree 7
- a_7_19, a nilpotent element of degree 7
- c_8_24, a Duflot regular element of degree 8
Ring relations
There are 65 minimal relations of maximal degree 14:
- a_1_02
- a_1_0·a_1_1
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_2·a_1_0 + a_1_13
- a_2_12
- a_1_0·a_3_4
- a_1_1·a_3_5 + a_1_1·a_3_4
- a_1_0·a_3_5
- b_2_2·a_1_13
- a_2_1·a_3_4
- a_2_1·a_3_5 + a_1_12·a_3_4
- b_2_2·a_3_4 + a_4_5·a_1_1
- a_4_5·a_1_0 + a_1_12·a_3_4
- a_3_42
- a_3_52
- a_3_4·a_3_5
- a_2_1·a_4_5
- a_1_1·a_5_9 + a_4_5·a_1_12 + c_2_32·a_1_12
- a_1_0·a_5_9
- a_1_0·a_5_10
- a_4_5·a_3_5
- a_4_5·a_3_4 + a_4_5·a_1_13
- a_2_1·a_5_9
- a_2_1·a_5_10 + a_4_5·a_1_13
- b_2_2·a_5_9 + b_2_22·a_3_5 + a_1_12·a_5_10 + b_2_2·c_2_32·a_1_1
- a_6_9·a_1_1 + c_2_3·a_1_12·a_3_4
- a_6_9·a_1_0 + a_4_5·a_1_13
- a_4_52 + b_2_22·c_2_3·a_1_12
- a_3_5·a_5_9 + c_2_32·a_1_1·a_3_4
- a_3_4·a_5_9 + c_2_32·a_1_1·a_3_4
- a_2_1·b_2_23 + a_3_5·a_5_10 + a_3_4·a_5_10
- a_2_1·a_6_9
- a_2_1·b_2_23 + a_3_5·a_5_10 + a_1_1·a_7_16 + c_2_32·a_1_1·a_3_4 + c_2_33·a_1_12
- a_1_0·a_7_16
- a_2_1·b_2_23 + a_3_5·a_5_10 + a_1_1·a_7_19 + c_2_3·a_1_1·a_5_10 + c_2_33·a_1_12
- a_1_0·a_7_19
- a_6_9·a_3_5 + a_4_5·a_5_9 + c_2_32·a_4_5·a_1_1
- a_6_9·a_3_4 + c_2_3·a_4_5·a_1_13
- b_2_2·a_7_16 + b_2_23·a_3_5 + a_4_5·a_5_10 + b_2_22·a_4_5·a_1_1 + b_2_22·c_2_3·a_3_5
+ b_2_2·c_2_3·a_4_5·a_1_1 + c_2_3·a_1_12·a_5_10 + c_2_3·a_4_5·a_1_13 + c_2_32·a_4_5·a_1_1 + b_2_2·c_2_33·a_1_1
- a_2_1·a_7_16
- a_4_5·a_5_9 + a_1_12·a_7_16 + c_2_32·a_4_5·a_1_1 + c_2_32·a_1_12·a_3_4
+ c_2_33·a_1_13
- a_4_5·a_5_9 + a_2_1·a_7_19 + c_2_3·a_4_5·a_1_13 + c_2_32·a_4_5·a_1_1
- a_5_92 + c_2_34·a_1_12
- a_5_9·a_5_10 + b_2_2·a_3_5·a_5_10 + c_2_32·a_1_1·a_5_10
- a_4_5·a_6_9 + b_2_2·c_2_3·a_4_5·a_1_12
- a_3_5·a_7_16 + c_2_33·a_1_1·a_3_4
- a_3_4·a_7_16 + c_2_33·a_1_1·a_3_4
- a_3_5·a_7_19 + b_2_22·a_4_5·a_1_12 + c_2_3·a_3_5·a_5_10 + c_2_33·a_1_1·a_3_4
- a_3_4·a_7_19 + c_2_3·a_1_1·a_7_16 + c_2_34·a_1_12
- a_5_102 + b_2_2·a_3_5·a_5_10 + b_2_22·a_1_1·a_5_10 + b_2_24·a_1_12
+ a_4_5·a_1_1·a_5_10 + b_2_22·a_4_5·a_1_12 + c_8_24·a_1_12 + c_2_32·a_4_5·a_1_12
- a_6_9·a_5_9 + a_4_5·a_1_12·a_5_10 + c_2_33·a_1_12·a_3_4
- a_6_9·a_5_10 + a_4_5·a_7_16 + a_4_5·a_1_12·a_5_10 + c_2_33·a_4_5·a_1_1
- a_6_9·a_5_10 + a_4_5·a_1_12·a_5_10 + c_2_3·a_1_12·a_7_16
+ b_2_2·c_2_3·a_1_12·a_5_10 + c_2_33·a_1_12·a_3_4 + c_2_34·a_1_13
- a_4_5·a_7_19 + a_4_5·a_1_12·a_5_10 + c_2_3·a_4_5·a_5_10 + b_2_2·c_2_3·a_1_12·a_5_10
+ c_2_32·a_4_5·a_1_13 + c_2_33·a_4_5·a_1_1
- a_6_92
- a_5_9·a_7_16 + c_2_32·a_1_1·a_7_16 + c_2_33·a_4_5·a_1_12
- a_5_9·a_7_19 + a_5_9·a_7_16 + b_2_23·a_4_5·a_1_12 + b_2_2·c_2_3·a_3_5·a_5_10
+ c_2_33·a_1_1·a_5_10 + c_2_34·a_1_1·a_3_4
- a_5_10·a_7_16 + a_5_9·a_7_16 + b_2_22·a_3_5·a_5_10 + b_2_23·a_4_5·a_1_12
+ c_8_24·a_1_1·a_3_4 + b_2_2·c_2_3·a_3_5·a_5_10 + c_2_3·a_4_5·a_1_1·a_5_10 + c_2_33·a_1_1·a_5_10 + c_2_33·a_4_5·a_1_12 + c_2_34·a_1_1·a_3_4 + c_2_35·a_1_12
- b_2_23·a_6_9 + a_5_10·a_7_19 + a_5_10·a_7_16 + a_5_9·a_7_16 + b_2_2·c_2_3·a_3_5·a_5_10
+ b_2_22·c_2_3·a_1_1·a_5_10 + c_2_3·a_4_5·a_1_1·a_5_10 + c_2_3·c_8_24·a_1_12 + c_2_34·a_1_1·a_3_4 + c_2_35·a_1_12
- a_6_9·a_7_16 + b_2_2·a_4_5·a_1_12·a_5_10 + c_2_33·a_4_5·a_1_13
+ c_2_34·a_1_12·a_3_4
- a_6_9·a_7_19 + b_2_2·a_4_5·a_1_12·a_5_10 + c_8_24·a_1_12·a_3_4
+ c_2_3·a_4_5·a_1_12·a_5_10 + c_2_32·a_1_12·a_7_16 + b_2_2·c_2_32·a_1_12·a_5_10 + c_2_35·a_1_13
- a_7_162 + c_2_36·a_1_12
- a_7_16·a_7_19 + b_2_24·a_4_5·a_1_12 + b_2_22·c_2_3·a_3_5·a_5_10
+ c_2_3·c_8_24·a_1_1·a_3_4 + b_2_2·c_2_32·a_3_5·a_5_10 + c_2_32·a_4_5·a_1_1·a_5_10 + c_2_33·a_1_1·a_7_16 + c_2_34·a_1_1·a_5_10
- a_7_192 + b_2_2·c_2_32·a_3_5·a_5_10 + b_2_22·c_2_32·a_1_1·a_5_10
+ b_2_24·c_2_32·a_1_12 + c_2_32·a_4_5·a_1_1·a_5_10 + b_2_22·c_2_32·a_4_5·a_1_12 + c_2_32·c_8_24·a_1_12 + c_2_34·a_4_5·a_1_12 + c_2_36·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_8_24, a Duflot regular element of degree 8
- b_2_2, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_3 → c_1_02, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- a_7_16 → 0, an element of degree 7
- a_7_19 → 0, an element of degree 7
- c_8_24 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- c_2_3 → c_1_02, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- a_7_16 → 0, an element of degree 7
- a_7_19 → 0, an element of degree 7
- c_8_24 → c_1_14·c_1_24 + c_1_18 + c_1_02·c_1_26 + c_1_04·c_1_24, an element of degree 8
|