Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 513 of order 128
General information on the group
- The group has 3 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 5.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 5.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1) · (t2 + 1) |
| (t + 1)2 · (t − 1)5 |
- The a-invariants are -∞,-∞,-∞,-5,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_2_6, an element of degree 2
- b_2_7, an element of degree 2
- c_2_8, a Duflot regular element of degree 2
- b_3_16, an element of degree 3
- b_3_17, an element of degree 3
- b_3_18, an element of degree 3
- b_4_28, an element of degree 4
- b_4_30, an element of degree 4
- c_4_37, a Duflot regular element of degree 4
Ring relations
There are 53 minimal relations of maximal degree 8:
- a_1_02
- a_1_0·b_1_1
- a_1_0·b_1_2
- b_2_3·a_1_0
- b_2_3·b_1_1
- b_2_4·a_1_0
- b_2_5·b_1_1 + b_2_6·a_1_0
- b_2_6·b_1_1 + b_2_5·b_1_1
- b_2_5·b_1_1 + b_2_7·a_1_0
- b_2_5·b_1_22 + b_2_32
- b_2_6·b_1_22 + b_2_3·b_2_4
- b_2_4·b_2_5 + b_2_3·b_2_6
- b_2_7·b_1_22 + b_2_4·b_1_1·b_1_2 + b_2_42 + c_2_8·b_1_12
- b_2_4·b_2_6 + b_2_3·b_2_7
- b_2_62 + b_2_5·b_2_7
- b_1_2·b_3_16 + b_2_4·b_2_6 + b_2_4·b_2_5
- a_1_0·b_3_16
- b_1_1·b_3_16
- a_1_0·b_3_17
- a_1_0·b_3_18
- b_1_2·b_3_17 + b_1_1·b_3_18 + b_2_4·b_2_7 + b_2_4·b_2_6
- b_2_5·b_2_7·b_1_2 + b_2_5·b_2_6·b_1_2 + b_2_3·b_3_16
- b_2_6·b_2_7·b_1_2 + b_2_5·b_2_7·b_1_2 + b_2_4·b_3_16
- b_2_6·b_2_7·b_1_2 + b_2_5·b_2_7·b_1_2 + b_2_3·b_3_17
- b_2_6·b_3_16 + b_2_5·b_3_17 + b_2_5·b_2_6·a_1_0
- b_2_7·b_3_16 + b_2_6·b_3_17 + b_2_5·b_2_6·a_1_0
- b_4_28·b_1_2 + b_2_3·b_3_18 + b_2_3·b_2_7·b_1_2
- b_4_28·a_1_0
- b_4_28·b_1_1
- b_4_30·b_1_2 + b_2_4·b_3_18 + b_2_4·b_2_7·b_1_2 + b_2_3·b_2_7·b_1_2 + b_2_7·c_2_8·b_1_1
+ b_2_6·c_2_8·a_1_0
- b_4_30·a_1_0
- b_4_30·b_1_1 + b_2_72·b_1_2 + b_2_6·b_2_7·b_1_2 + b_2_4·b_3_17
- b_3_162 + b_2_5·b_2_72 + b_2_52·b_2_7
- b_3_16·b_3_17 + b_2_6·b_2_72 + b_2_5·b_2_6·b_2_7
- b_3_182 + b_2_7·b_1_2·b_3_18 + b_2_6·b_1_2·b_3_18 + b_2_32·b_2_6 + c_4_37·b_1_22
+ b_2_72·c_2_8 + b_2_5·b_2_7·c_2_8
- b_3_172 + b_2_7·b_1_1·b_3_17 + b_2_73 + b_2_5·b_2_72 + c_4_37·b_1_12
- b_2_5·b_1_2·b_3_18 + b_2_3·b_4_28 + b_2_32·b_2_7
- b_2_6·b_1_2·b_3_18 + b_2_4·b_4_28 + b_2_3·b_2_4·b_2_7
- b_3_16·b_3_18 + b_2_7·b_4_28 + b_2_6·b_4_28 + b_2_3·b_2_72 + b_2_3·b_2_6·b_2_7
- b_2_6·b_1_2·b_3_18 + b_2_3·b_4_30 + b_2_3·b_2_4·b_2_7 + b_2_32·b_2_7
- b_3_16·b_3_18 + b_2_7·b_4_28 + b_2_5·b_4_30 + b_2_3·b_2_72 + b_2_3·b_2_6·b_2_7
+ b_2_3·b_2_5·b_2_7
- b_2_7·b_1_2·b_3_18 + b_2_4·b_1_1·b_3_18 + b_2_4·b_4_30 + b_2_42·b_2_7
+ b_2_3·b_2_4·b_2_7 + c_2_8·b_1_1·b_3_17
- b_3_17·b_3_18 + b_2_7·b_1_1·b_3_18 + b_2_7·b_4_30 + b_2_7·b_4_28 + b_2_4·b_2_72
+ c_4_37·b_1_1·b_1_2
- b_2_7·b_4_28 + b_2_6·b_4_30 + b_2_3·b_2_6·b_2_7
- b_4_28·b_3_17 + b_2_6·b_2_7·b_3_18 + b_2_5·b_2_7·b_3_18 + b_2_3·b_2_7·b_3_17
- b_4_28·b_3_18 + b_2_3·b_2_6·b_3_18 + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_6·c_2_8·b_3_17
+ b_2_5·c_2_8·b_3_17 + b_2_3·c_4_37·b_1_2
- b_4_28·b_3_16 + b_2_5·b_2_7·b_3_18 + b_2_5·b_2_6·b_3_18 + b_2_3·b_2_6·b_3_17
- b_4_30·b_3_17 + b_2_72·b_3_18 + b_2_6·b_2_7·b_3_18 + b_2_4·b_2_7·b_3_17
+ b_2_3·b_2_7·b_3_17 + b_2_4·c_4_37·b_1_1
- b_4_30·b_3_18 + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_32·b_3_16 + b_2_7·c_2_8·b_3_17
+ b_2_6·c_2_8·b_3_17 + b_2_4·c_4_37·b_1_2
- b_4_30·b_3_16 + b_2_6·b_2_7·b_3_18 + b_2_5·b_2_7·b_3_18 + b_2_3·b_2_7·b_3_17
+ b_2_3·b_2_6·b_3_17
- b_4_282 + b_2_3·b_2_6·b_4_30 + b_2_3·b_2_5·b_4_30 + b_2_32·b_2_5·b_2_7
+ b_2_32·b_2_5·b_2_6 + b_2_5·b_2_72·c_2_8 + b_2_52·b_2_7·c_2_8 + b_2_32·c_4_37
- b_4_28·b_4_30 + b_2_3·b_2_7·b_4_30 + b_2_32·b_2_5·b_2_7 + b_2_6·b_2_72·c_2_8
+ b_2_5·b_2_6·b_2_7·c_2_8 + b_2_3·b_2_4·c_4_37
- b_4_302 + b_2_4·b_2_7·b_4_30 + b_2_3·b_2_7·b_4_30 + b_2_32·b_2_6·b_2_7
+ b_2_73·c_2_8 + b_2_5·b_2_72·c_2_8 + b_2_42·c_4_37
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_8, a Duflot regular element of degree 2
- c_4_37, a Duflot regular element of degree 4
- b_1_24 + b_1_12·b_1_22 + b_1_14 + b_2_7·b_1_1·b_1_2 + b_2_72 + b_2_5·b_2_7
+ b_2_52 + b_2_4·b_1_1·b_1_2 + b_2_42 + b_2_3·b_2_7 + b_2_3·b_2_6 + b_2_3·b_2_4 + b_2_32 + c_2_8·b_1_12, an element of degree 4
- b_1_12·b_1_24 + b_1_14·b_1_22 + b_2_7·b_1_13·b_1_2 + b_2_72·b_1_1·b_1_2
+ b_2_72·b_1_12 + b_2_5·b_2_72 + b_2_52·b_2_7 + b_2_4·b_1_1·b_1_23 + b_2_4·b_2_7·b_1_1·b_1_2 + b_2_42·b_1_22 + b_2_42·b_2_7 + b_2_3·b_2_72 + b_2_3·b_2_5·b_2_6 + b_2_3·b_2_4·b_1_22 + b_2_32·b_1_22 + b_2_32·b_2_7 + b_2_32·b_2_5 + c_2_8·b_1_12·b_1_22 + b_2_7·c_2_8·b_1_12, an element of degree 6
- b_2_72·b_1_12·b_1_2 + b_2_4·b_1_12·b_1_23 + b_2_4·b_1_14·b_1_2
+ b_2_4·b_2_7·b_1_12·b_1_2 + b_2_42·b_1_1·b_1_22 + b_2_42·b_1_13 + b_2_42·b_2_7·b_1_1 + b_2_3·b_2_6·b_3_17 + b_2_3·b_2_5·b_3_17 + b_2_3·b_2_4·b_3_17 + b_2_3·b_2_42·b_1_2 + b_2_32·b_3_17 + b_2_32·b_3_16 + b_2_32·b_2_4·b_1_2 + c_2_8·b_1_13·b_1_22 + c_2_8·b_1_15 + b_2_7·c_2_8·b_1_13, an element of degree 7
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 11, 18].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 3 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_2_7 → 0, an element of degree 2
- c_2_8 → c_1_02, an element of degree 2
- b_3_16 → 0, an element of degree 3
- b_3_17 → 0, an element of degree 3
- b_3_18 → 0, an element of degree 3
- b_4_28 → 0, an element of degree 4
- b_4_30 → 0, an element of degree 4
- c_4_37 → c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → c_1_3·c_1_4 + c_1_0·c_1_2, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_2_7 → c_1_42 + c_1_2·c_1_4, an element of degree 2
- c_2_8 → c_1_0·c_1_3 + c_1_02, an element of degree 2
- b_3_16 → 0, an element of degree 3
- b_3_17 → c_1_43 + c_1_22·c_1_4 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_18 → c_1_3·c_1_42 + c_1_2·c_1_3·c_1_4 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3 + c_1_0·c_1_42
+ c_1_0·c_1_2·c_1_4, an element of degree 3
- b_4_28 → 0, an element of degree 4
- b_4_30 → c_1_1·c_1_2·c_1_3·c_1_4 + c_1_12·c_1_3·c_1_4 + c_1_0·c_1_43 + c_1_0·c_1_22·c_1_4
+ c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- c_4_37 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_22·c_1_4 + c_1_12·c_1_42 + c_1_12·c_1_2·c_1_4
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_2·c_1_4, an element of degree 2
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_42, an element of degree 2
- b_2_6 → c_1_3·c_1_4, an element of degree 2
- b_2_7 → c_1_32, an element of degree 2
- c_2_8 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_16 → c_1_3·c_1_42 + c_1_32·c_1_4, an element of degree 3
- b_3_17 → c_1_32·c_1_4 + c_1_33, an element of degree 3
- b_3_18 → c_1_2·c_1_32 + c_1_1·c_1_2·c_1_4 + c_1_12·c_1_2 + c_1_0·c_1_3·c_1_4 + c_1_0·c_1_32, an element of degree 3
- b_4_28 → c_1_1·c_1_2·c_1_42 + c_1_12·c_1_2·c_1_4 + c_1_0·c_1_3·c_1_42
+ c_1_0·c_1_32·c_1_4, an element of degree 4
- b_4_30 → c_1_2·c_1_32·c_1_4 + c_1_1·c_1_2·c_1_3·c_1_4 + c_1_12·c_1_2·c_1_3
+ c_1_0·c_1_32·c_1_4 + c_1_0·c_1_33, an element of degree 4
- c_4_37 → c_1_3·c_1_43 + c_1_33·c_1_4 + c_1_1·c_1_3·c_1_42 + c_1_1·c_1_32·c_1_4
+ c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_32 + c_1_14, an element of degree 4
|