Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 515 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 5.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 5.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t2 − 1/2·t + 1/2) |
| (t + 1) · (t − 1)5 · (t2 + 1) |
- The a-invariants are -∞,-∞,-5,-5,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 17 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_2_6, an element of degree 2
- c_2_7, a Duflot regular element of degree 2
- b_3_14, an element of degree 3
- b_3_15, an element of degree 3
- b_3_16, an element of degree 3
- b_3_17, an element of degree 3
- b_4_30, an element of degree 4
- b_4_31, an element of degree 4
- b_4_32, an element of degree 4
- c_4_35, a Duflot regular element of degree 4
- b_5_58, an element of degree 5
Ring relations
There are 86 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·b_1_1
- a_1_0·b_1_2
- b_2_3·a_1_0
- b_2_4·a_1_0
- b_2_4·b_1_1 + b_2_3·b_1_2
- b_2_5·a_1_0
- b_2_6·a_1_0
- b_2_3·b_1_12 + b_2_32
- b_2_3·b_1_1·b_1_2 + b_2_3·b_2_4
- b_2_42 + b_2_3·b_1_22
- b_2_6·b_1_22 + b_2_5·b_1_1·b_1_2 + b_2_52 + c_2_7·b_1_12
- b_1_2·b_3_14 + b_2_4·b_2_5
- a_1_0·b_3_14
- b_1_1·b_3_14 + b_2_3·b_2_5
- b_1_2·b_3_15 + b_2_4·b_2_6
- a_1_0·b_3_15
- b_1_1·b_3_15 + b_2_3·b_2_6
- a_1_0·b_3_16
- a_1_0·b_3_17
- b_1_2·b_3_16 + b_1_1·b_3_17 + b_2_5·b_2_6
- b_2_3·b_3_14 + b_2_3·b_2_5·b_1_1
- b_2_5·b_3_14 + b_2_4·b_2_6·b_1_2 + b_2_3·b_2_5·b_1_2 + b_2_3·c_2_7·b_1_1
- b_2_4·b_3_14 + b_2_3·b_2_5·b_1_2
- b_2_3·b_3_15 + b_2_3·b_2_6·b_1_1
- b_2_6·b_3_14 + b_2_5·b_3_15
- b_2_4·b_3_15 + b_2_3·b_2_6·b_1_2
- b_2_6·b_3_14 + b_2_4·b_3_16 + b_2_3·b_3_17
- b_4_30·b_1_2 + b_2_4·b_3_17
- b_4_30·a_1_0
- b_4_30·b_1_1 + b_2_6·b_3_14 + b_2_4·b_3_16
- b_4_31·b_1_2 + b_2_62·b_1_2 + b_2_4·b_3_16
- b_4_31·a_1_0
- b_4_31·b_1_1 + b_2_62·b_1_1 + b_2_3·b_3_16
- b_4_32·b_1_2 + b_2_5·b_3_17 + b_2_5·b_2_6·b_1_2 + b_2_4·b_3_17 + b_2_6·c_2_7·b_1_1
- b_4_32·a_1_0
- b_4_32·b_1_1 + b_2_6·b_3_14 + b_2_62·b_1_2 + b_2_5·b_3_16 + b_2_4·b_3_16
- b_3_142 + b_2_3·b_2_52
- b_3_14·b_3_15 + b_2_3·b_2_5·b_2_6
- b_3_152 + b_2_3·b_2_62
- b_3_172 + b_2_6·b_1_2·b_3_17 + b_2_4·b_2_5·b_2_6 + b_2_3·b_1_2·b_3_17
+ c_4_35·b_1_22 + b_2_62·c_2_7
- b_3_162 + b_2_6·b_1_1·b_3_16 + b_2_63 + b_2_3·b_1_1·b_3_16 + c_4_35·b_1_12
- b_2_3·b_1_1·b_3_17 + b_2_3·b_4_30
- b_3_14·b_3_17 + b_2_5·b_4_30
- b_2_4·b_4_30 + b_2_3·b_1_2·b_3_17
- b_3_15·b_3_17 + b_2_6·b_4_30
- b_2_3·b_1_1·b_3_16 + b_2_3·b_4_31 + b_2_3·b_2_62
- b_3_14·b_3_16 + b_2_5·b_4_31 + b_2_5·b_2_62
- b_2_4·b_4_31 + b_2_4·b_2_62 + b_2_3·b_1_1·b_3_17 + b_2_3·b_2_5·b_2_6
- b_3_15·b_3_16 + b_2_6·b_4_31 + b_2_63
- b_3_14·b_3_16 + b_2_4·b_2_62 + b_2_3·b_1_1·b_3_17 + b_2_3·b_4_32
- b_3_14·b_3_17 + b_2_6·b_1_2·b_3_17 + b_2_5·b_1_1·b_3_17 + b_2_5·b_4_32 + b_2_52·b_2_6
+ c_2_7·b_1_1·b_3_16
- b_3_14·b_3_17 + b_2_4·b_4_32 + b_2_4·b_2_5·b_2_6 + b_2_3·b_1_2·b_3_17
+ b_2_3·b_2_6·c_2_7
- b_3_16·b_3_17 + b_3_15·b_3_17 + b_2_6·b_1_1·b_3_17 + b_2_6·b_4_32 + b_2_5·b_2_62
+ b_2_3·b_1_1·b_3_17 + b_2_3·b_2_5·b_2_6 + c_4_35·b_1_1·b_1_2
- b_3_14·b_3_17 + b_1_2·b_5_58 + b_2_4·b_2_5·b_2_6 + b_2_3·b_2_6·c_2_7
- a_1_0·b_5_58
- b_3_14·b_3_16 + b_1_1·b_5_58 + b_2_4·b_2_62
- b_4_30·b_3_17 + b_2_4·b_2_6·b_3_17 + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_3·b_2_4·b_3_17
+ b_2_6·c_2_7·b_3_15 + b_2_4·c_4_35·b_1_2
- b_4_30·b_3_14 + b_2_3·b_2_5·b_3_17
- b_4_30·b_3_15 + b_2_3·b_2_6·b_3_17
- b_4_31·b_3_17 + b_4_30·b_3_16 + b_2_62·b_3_17
- b_4_31·b_3_16 + b_2_62·b_3_16 + b_2_62·b_3_15 + b_2_3·b_2_6·b_3_16 + b_2_32·b_3_16
+ b_2_3·c_4_35·b_1_1
- b_4_31·b_3_14 + b_2_4·b_2_6·b_3_16 + b_2_3·b_2_6·b_3_17 + b_2_3·b_2_5·b_3_16
- b_4_31·b_3_15 + b_2_62·b_3_15 + b_2_3·b_2_6·b_3_16
- b_4_32·b_3_17 + b_2_4·b_2_6·b_3_17 + b_2_4·b_2_5·b_3_16 + b_2_3·b_2_5·b_2_6·b_1_2
+ b_2_3·b_2_4·b_3_17 + b_2_6·c_2_7·b_3_16 + b_2_6·c_2_7·b_3_15 + b_2_5·c_4_35·b_1_2 + b_2_4·c_4_35·b_1_2
- b_4_32·b_3_16 + b_4_30·b_3_16 + b_2_62·b_3_17 + b_2_5·b_2_6·b_3_16 + b_2_3·b_2_5·b_3_16
+ b_2_5·c_4_35·b_1_1
- b_4_32·b_3_14 + b_2_4·b_2_6·b_3_17 + b_2_4·b_2_5·b_3_16 + b_2_3·b_2_5·b_3_17
+ b_2_3·c_2_7·b_3_16
- b_4_32·b_3_15 + b_4_30·b_3_16 + b_2_4·b_2_6·b_3_16 + b_2_3·b_2_6·b_3_17
+ b_2_3·b_2_4·b_3_16 + b_2_3·c_4_35·b_1_2
- b_2_3·b_5_58 + b_2_3·b_2_62·b_1_2 + b_2_3·b_2_5·b_3_16
- b_2_5·b_5_58 + b_2_4·b_2_6·b_3_17 + b_2_4·b_2_5·b_3_16 + b_2_3·c_2_7·b_3_16
- b_2_4·b_5_58 + b_2_3·b_2_5·b_3_17 + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_3·b_2_6·c_2_7·b_1_1
- b_4_30·b_3_16 + b_2_6·b_5_58 + b_2_4·b_2_6·b_3_16 + b_2_3·b_2_4·b_3_16
+ b_2_3·c_4_35·b_1_2
- b_4_312 + b_2_64 + b_2_3·b_2_6·b_4_31 + b_2_32·b_4_31 + b_2_32·b_2_62
+ b_2_32·c_4_35
- b_4_302 + b_2_3·b_2_5·b_4_32 + b_2_3·b_2_52·b_2_6 + b_2_3·b_2_4·b_2_5·b_2_6
+ b_2_32·b_1_2·b_3_17 + b_2_3·c_4_35·b_1_22 + b_2_3·c_2_7·b_4_31
- b_4_30·b_4_31 + b_2_62·b_4_30 + b_2_3·b_2_6·b_4_32 + b_2_3·b_2_5·b_2_62
+ b_2_32·b_4_30 + b_2_32·b_2_5·b_2_6 + b_2_3·b_2_4·c_4_35
- b_4_322 + b_4_302 + b_2_5·b_2_6·b_4_32 + b_2_4·b_2_6·b_4_32 + b_2_3·b_2_52·b_2_6
+ b_2_3·b_2_4·b_4_32 + b_2_3·b_2_4·b_2_5·b_2_6 + b_2_32·b_1_2·b_3_17 + b_2_63·c_2_7 + b_2_52·c_4_35 + b_2_3·c_2_7·b_4_31 + b_2_32·b_2_6·c_2_7
- b_4_31·b_4_32 + b_2_62·b_4_32 + b_2_62·b_4_30 + b_2_4·b_2_63 + b_2_3·b_2_6·b_4_30
+ b_2_3·b_2_5·b_2_62 + b_2_3·b_2_4·b_2_62 + b_2_32·b_4_32 + b_2_32·b_2_5·b_2_6 + b_2_3·b_2_5·c_4_35 + b_2_3·b_2_4·c_4_35
- b_4_30·b_4_32 + b_4_302 + b_2_3·b_2_52·b_2_6 + b_2_3·b_2_4·b_4_32
+ b_2_3·b_2_4·b_2_5·b_2_6 + b_2_32·b_1_2·b_3_17 + b_2_6·c_2_7·b_4_31 + b_2_63·c_2_7 + b_2_4·b_2_5·c_4_35 + b_2_32·b_2_6·c_2_7
- b_3_17·b_5_58 + b_2_3·b_2_52·b_2_6 + b_2_3·b_2_4·b_4_32 + b_2_3·b_2_4·b_2_5·b_2_6
+ b_2_32·b_1_2·b_3_17 + b_2_6·c_2_7·b_4_31 + b_2_63·c_2_7 + b_2_4·b_2_5·c_4_35 + b_2_32·b_2_6·c_2_7
- b_3_16·b_5_58 + b_4_30·b_4_31 + b_2_4·b_2_63 + b_2_3·b_2_6·b_4_30
+ b_2_3·b_2_5·b_2_62 + b_2_3·b_2_4·b_2_62 + b_2_32·b_4_32 + b_2_32·b_2_5·b_2_6 + b_2_3·b_2_5·c_4_35 + b_2_3·b_2_4·c_4_35
- b_3_14·b_5_58 + b_4_302 + b_2_3·b_2_52·b_2_6 + b_2_3·b_2_4·b_4_32
+ b_2_3·c_4_35·b_1_22 + b_2_3·c_2_7·b_4_31 + b_2_32·b_2_6·c_2_7
- b_3_15·b_5_58 + b_4_30·b_4_31 + b_2_62·b_4_30 + b_2_3·b_2_6·b_4_30
+ b_2_3·b_2_5·b_2_62 + b_2_32·b_4_30 + b_2_32·b_2_5·b_2_6 + b_2_3·b_2_4·c_4_35
- b_4_32·b_5_58 + b_2_4·b_2_62·b_3_17 + b_2_4·b_2_5·b_2_6·b_3_16 + b_2_3·b_2_52·b_3_16
+ b_2_3·b_2_4·b_2_5·b_3_16 + b_2_62·c_2_7·b_3_15 + b_2_4·b_2_6·c_4_35·b_1_2 + b_2_3·c_2_7·c_4_35·b_1_1
- b_4_31·b_5_58 + b_2_62·b_5_58 + b_2_3·b_2_62·b_3_17 + b_2_3·b_2_5·b_2_6·b_3_16
+ b_2_32·b_2_5·b_3_16 + b_2_3·b_2_5·c_4_35·b_1_1
- b_4_30·b_5_58 + b_2_3·b_2_4·b_2_5·b_3_16 + b_2_3·b_2_6·c_2_7·b_3_16
+ b_2_3·b_2_5·c_4_35·b_1_2
- b_5_582 + b_2_3·b_2_5·b_2_6·b_4_32 + b_2_3·b_2_4·b_2_6·b_4_32
+ b_2_32·b_2_52·b_2_6 + b_2_32·b_2_4·b_4_32 + b_2_32·b_2_4·b_2_5·b_2_6 + b_2_33·b_1_2·b_3_17 + b_2_3·b_2_63·c_2_7 + b_2_3·b_2_52·c_4_35 + b_2_32·c_2_7·b_4_31 + b_2_33·b_2_6·c_2_7
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- However, the last relation was already found in degree 10 and the last generator in degree 5.
- The following is a filter regular homogeneous system of parameters:
- c_2_7, a Duflot regular element of degree 2
- c_4_35, a Duflot regular element of degree 4
- b_1_24 + b_1_12·b_1_22 + b_1_14 + b_2_6·b_1_1·b_1_2 + b_2_62 + b_2_5·b_1_1·b_1_2
+ b_2_52 + c_2_7·b_1_12, an element of degree 4
- b_1_12·b_1_24 + b_1_14·b_1_22 + b_2_6·b_1_13·b_1_2 + b_2_62·b_1_1·b_1_2
+ b_2_62·b_1_12 + b_2_5·b_1_1·b_1_23 + b_2_5·b_2_6·b_1_1·b_1_2 + b_2_52·b_1_22 + b_2_52·b_2_6 + c_2_7·b_1_12·b_1_22 + b_2_6·c_2_7·b_1_12, an element of degree 6
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 1, 5, 11, 13].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- c_2_7 → c_1_02, an element of degree 2
- b_3_14 → 0, an element of degree 3
- b_3_15 → 0, an element of degree 3
- b_3_16 → 0, an element of degree 3
- b_3_17 → 0, an element of degree 3
- b_4_30 → 0, an element of degree 4
- b_4_31 → 0, an element of degree 4
- b_4_32 → 0, an element of degree 4
- c_4_35 → c_1_14, an element of degree 4
- b_5_58 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_3·c_1_4 + c_1_0·c_1_2, an element of degree 2
- b_2_6 → c_1_42 + c_1_2·c_1_4, an element of degree 2
- c_2_7 → c_1_0·c_1_3 + c_1_02, an element of degree 2
- b_3_14 → 0, an element of degree 3
- b_3_15 → 0, an element of degree 3
- b_3_16 → c_1_43 + c_1_22·c_1_4 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_17 → c_1_3·c_1_42 + c_1_2·c_1_3·c_1_4 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3 + c_1_0·c_1_42
+ c_1_0·c_1_2·c_1_4, an element of degree 3
- b_4_30 → 0, an element of degree 4
- b_4_31 → c_1_44 + c_1_22·c_1_42, an element of degree 4
- b_4_32 → c_1_1·c_1_2·c_1_3·c_1_4 + c_1_12·c_1_3·c_1_4 + c_1_0·c_1_43 + c_1_0·c_1_22·c_1_4
+ c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- c_4_35 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_22·c_1_4 + c_1_12·c_1_42 + c_1_12·c_1_2·c_1_4
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_58 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_4, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_42, an element of degree 2
- b_2_4 → c_1_2·c_1_4, an element of degree 2
- b_2_5 → c_1_2·c_1_3 + c_1_0·c_1_4, an element of degree 2
- b_2_6 → c_1_3·c_1_4 + c_1_32, an element of degree 2
- c_2_7 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_14 → c_1_2·c_1_3·c_1_4 + c_1_0·c_1_42, an element of degree 3
- b_3_15 → c_1_3·c_1_42 + c_1_32·c_1_4, an element of degree 3
- b_3_16 → c_1_43 + c_1_3·c_1_42 + c_1_33 + c_1_1·c_1_42 + c_1_12·c_1_4, an element of degree 3
- b_3_17 → c_1_2·c_1_42 + c_1_2·c_1_3·c_1_4 + c_1_2·c_1_32 + c_1_1·c_1_2·c_1_4 + c_1_12·c_1_2
+ c_1_0·c_1_3·c_1_4 + c_1_0·c_1_32, an element of degree 3
- b_4_30 → c_1_2·c_1_43 + c_1_2·c_1_3·c_1_42 + c_1_2·c_1_32·c_1_4 + c_1_1·c_1_2·c_1_42
+ c_1_12·c_1_2·c_1_4 + c_1_0·c_1_3·c_1_42 + c_1_0·c_1_32·c_1_4, an element of degree 4
- b_4_31 → c_1_44 + c_1_3·c_1_43 + c_1_32·c_1_42 + c_1_33·c_1_4 + c_1_34 + c_1_1·c_1_43
+ c_1_12·c_1_42, an element of degree 4
- b_4_32 → c_1_2·c_1_43 + c_1_2·c_1_32·c_1_4 + c_1_1·c_1_2·c_1_42 + c_1_1·c_1_2·c_1_3·c_1_4
+ c_1_12·c_1_2·c_1_4 + c_1_12·c_1_2·c_1_3 + c_1_0·c_1_43 + c_1_0·c_1_32·c_1_4 + c_1_0·c_1_33 + c_1_0·c_1_1·c_1_42 + c_1_0·c_1_12·c_1_4, an element of degree 4
- c_4_35 → c_1_32·c_1_42 + c_1_33·c_1_4 + c_1_1·c_1_43 + c_1_1·c_1_3·c_1_42
+ c_1_1·c_1_32·c_1_4 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_32 + c_1_14, an element of degree 4
- b_5_58 → c_1_2·c_1_3·c_1_43 + c_1_1·c_1_2·c_1_3·c_1_42 + c_1_12·c_1_2·c_1_3·c_1_4
+ c_1_0·c_1_44 + c_1_0·c_1_3·c_1_43 + c_1_0·c_1_33·c_1_4 + c_1_0·c_1_1·c_1_43 + c_1_0·c_1_12·c_1_42, an element of degree 5
|