| Simon King       
     
 
        David J. Green
     
     
 
      Cohomology
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      Faculty
     
     
 
      External links:
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Cohomology of group number 516 of order 128
 
 
  General information on the group
  The group has 3 minimal generators and exponent 8.
   It is non-abelian.
   It has p-Rank 4.
   Its center has rank 2.
   It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
   
 
  Structure of the cohomology ring
  General information
   The cohomology ring is of dimension 4 and depth 2.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | t6  −  t5  +  3·t4  −  3·t3  +  3·t2  −  t  +  1 |  | 
 |  | (t  −  1)4 · (t2  +  1) · (t4  +  1) | 
 The a-invariants are -∞,-∞,-4,-4,-4.  They were obtained using the filter regular HSOP of the Benson test.
   
 
  Ring generators
The cohomology ring has 18 minimal generators of maximal degree 8:
 
   a_1_0, a nilpotent element of degree 1
   a_1_1, a nilpotent element of degree 1
   b_1_2, an element of degree 1
   a_2_3, a nilpotent element of degree 2
   a_2_4, a nilpotent element of degree 2
   b_2_5, an element of degree 2
   b_2_6, an element of degree 2
   c_2_7, a Duflot regular element of degree 2
   a_3_10, a nilpotent element of degree 3
   a_3_15, a nilpotent element of degree 3
   a_5_37, a nilpotent element of degree 5
   b_5_40, an element of degree 5
   b_5_41, an element of degree 5
   a_6_57, a nilpotent element of degree 6
   a_6_48, a nilpotent element of degree 6
   b_6_60, an element of degree 6
   a_7_71, a nilpotent element of degree 7
   c_8_124, a Duflot regular element of degree 8
   
 
  Ring relations
There are 103 minimal relations of maximal degree 14:
 
   a_1_02
   a_1_0·a_1_1
   a_1_0·b_1_2
   a_2_3·a_1_0
   a_2_3·b_1_2 + a_2_4·a_1_1
   a_2_4·a_1_0
   b_2_5·a_1_0
   b_2_6·a_1_0 + a_1_13
   a_2_32 + a_2_3·a_1_12
   a_1_12·b_1_22 + a_2_4·a_1_1·b_1_2 + a_2_42
   a_2_3·a_2_4 + a_2_4·a_1_12
   b_2_6·b_1_22 + b_2_52 + b_2_5·a_1_1·b_1_2 + c_2_7·a_1_12
   b_1_2·a_3_10 + a_2_4·b_2_5
   a_2_3·b_2_5 + a_1_1·a_3_10
   a_1_0·a_3_10
   b_1_2·a_3_15 + a_2_4·b_2_6 + b_2_5·a_1_12
   a_2_3·b_2_6 + a_1_1·a_3_15
   a_1_0·a_3_15 + a_2_32
   b_2_6·a_1_13
   b_2_5·a_3_10 + a_2_4·b_2_6·b_1_2 + a_2_4·b_2_5·a_1_1 + a_2_3·c_2_7·a_1_1
   b_2_5·a_1_12·b_1_2 + a_2_4·a_3_10 + a_2_4·b_2_5·a_1_1
   a_2_3·a_3_10 + a_1_12·a_3_10
   b_2_6·a_3_10 + b_2_5·a_3_15 + b_2_6·a_1_12·b_1_2
   b_2_6·a_1_12·b_1_2 + a_2_4·a_3_15 + a_2_4·b_2_6·a_1_1 + a_2_3·a_3_10
   a_2_3·a_3_15 + a_1_12·a_3_15
   a_3_102 + a_2_42·b_2_6 + a_2_4·b_2_5·a_1_12 + a_2_3·c_2_7·a_1_12
   a_3_10·a_3_15 + b_2_5·a_1_1·a_3_15 + b_2_5·b_2_6·a_1_12 + a_2_4·b_2_6·a_1_12
   a_3_152 + b_2_6·a_1_1·a_3_15 + b_2_62·a_1_12 + a_1_13·a_3_15
   b_1_2·a_5_37 + b_2_5·b_2_6·a_1_12
   a_1_1·a_5_37
   a_1_0·a_5_37 + a_1_13·a_3_15
   a_1_0·b_5_40 + a_1_13·a_3_15
   b_1_2·b_5_40 + b_2_5·b_2_62 + a_1_1·b_5_41
   a_1_0·b_5_41
   b_2_5·a_5_37 + a_2_4·b_2_6·a_3_15 + a_2_4·b_2_62·a_1_1 + b_2_5·a_1_12·a_3_15
   a_2_3·a_5_37
   a_2_4·a_5_37 + b_2_5·a_1_12·a_3_15
   b_2_6·a_5_37 + a_1_12·b_5_40
   b_2_5·b_2_6·a_3_15 + a_2_4·b_5_40 + a_2_3·b_5_41 + a_2_4·b_2_6·a_3_15+ a_2_4·b_2_62·a_1_1 + b_2_5·a_1_12·a_3_15
 a_6_57·b_1_2 + a_2_4·b_5_40 + a_2_4·b_2_6·a_3_15
   a_2_3·b_5_40 + a_6_57·a_1_1 + b_2_6·a_1_12·a_3_15
   a_6_57·a_1_0
   a_1_1·b_1_2·b_5_41 + a_6_48·b_1_2 + b_2_52·b_2_6·a_1_1 + a_2_4·b_5_41+ a_2_4·b_2_5·b_2_6·a_1_1
 b_2_5·b_2_6·a_3_15 + a_2_4·b_5_40 + a_1_12·b_5_41 + a_6_48·a_1_1 + b_2_5·a_1_12·a_3_15
   a_6_48·a_1_0
   b_6_60·b_1_2 + b_2_5·b_5_41 + b_2_52·b_2_6·a_1_1 + a_2_4·b_5_41 + a_2_4·b_2_5·a_3_15+ a_2_42·b_2_6·a_1_1 + b_2_62·c_2_7·a_1_1
 b_2_63·b_1_2 + b_2_5·b_5_40 + b_6_60·a_1_1 + b_2_5·b_2_6·a_3_15 + b_2_5·b_2_62·a_1_1+ a_2_4·b_5_40 + b_2_5·a_1_12·a_3_15
 b_6_60·a_1_0
   a_3_10·a_5_37 + a_2_4·b_2_62·a_1_12
   a_3_15·b_5_40 + b_2_6·a_6_57 + a_3_15·a_5_37 + b_2_62·a_1_1·a_3_15
   a_3_15·a_5_37 + a_2_3·a_6_57
   b_2_5·b_2_62·a_1_12 + a_2_4·a_1_1·b_5_40 + a_2_4·a_6_57
   a_3_15·a_5_37 + a_6_57·a_1_12
   a_3_10·b_5_41 + b_2_5·a_1_1·b_5_41 + b_2_5·a_6_48 + b_2_5·b_2_62·a_1_1·b_1_2+ a_2_42·b_2_62 + a_2_4·b_2_5·b_2_6·a_1_12 + c_2_7·a_1_13·a_3_15
 a_3_15·b_5_41 + a_3_10·b_5_40 + b_2_6·a_1_1·b_5_41 + b_2_6·a_6_48 + b_2_5·a_1_1·b_5_40+ b_2_5·a_6_57 + b_2_5·b_2_62·a_1_12 + a_2_4·b_2_62·a_1_12
 a_2_3·a_6_48 + a_2_4·b_2_62·a_1_12
   a_6_48·a_1_1·b_1_2 + a_2_4·a_1_1·b_5_41 + a_2_4·a_6_48 + a_2_42·b_2_62+ a_2_4·b_2_5·b_2_6·a_1_12
 a_3_10·b_5_40 + b_2_5·a_6_57 + b_2_5·b_2_62·a_1_12 + a_2_4·a_1_1·b_5_40+ a_6_48·a_1_12 + a_2_4·b_2_62·a_1_12
 b_2_6·b_1_2·b_5_41 + b_2_5·b_6_60 + a_3_10·b_5_41 + b_2_5·a_1_1·b_5_41+ b_2_5·b_2_62·a_1_1·b_1_2 + a_2_4·b_2_62·a_1_1·b_1_2 + a_2_4·b_2_5·b_2_6·a_1_12
 + c_2_7·a_1_1·b_5_40 + c_2_7·a_1_13·a_3_15
 a_3_10·b_5_40 + a_2_4·b_2_63 + a_2_3·b_6_60 + a_2_4·a_1_1·b_5_40+ a_2_4·b_2_62·a_1_12
 a_3_10·b_5_41 + a_2_4·b_6_60 + a_6_48·a_1_1·b_1_2 + a_2_42·b_2_62+ b_2_6·c_2_7·a_1_1·a_3_15 + c_2_7·a_1_13·a_3_15
 a_3_10·b_5_41 + b_1_2·a_7_71 + b_2_5·a_1_1·b_5_41 + b_2_5·b_2_62·a_1_1·b_1_2+ a_6_48·a_1_1·b_1_2 + a_2_4·a_1_1·b_5_41 + a_2_4·b_2_62·a_1_1·b_1_2
 + a_2_42·b_2_62 + a_2_4·b_2_5·b_2_6·a_1_12 + b_2_6·c_2_7·a_1_1·a_3_15
 + b_2_62·c_2_7·a_1_12 + c_2_7·a_1_13·a_3_15
 a_3_10·b_5_40 + a_2_4·b_2_63 + a_1_1·a_7_71 + b_6_60·a_1_12 + b_2_5·b_2_62·a_1_12+ a_2_4·a_1_1·b_5_40
 a_1_0·a_7_71
   a_6_57·a_3_15 + b_2_6·a_1_12·b_5_40 + b_2_6·a_6_57·a_1_1
   a_6_48·a_3_15 + a_6_57·a_3_10 + b_2_6·a_1_12·b_5_41 + a_2_4·b_2_62·a_3_15+ a_2_4·b_2_63·a_1_1
 a_6_48·a_3_10 + b_2_5·a_6_48·a_1_1 + a_2_4·b_6_60·a_1_1 + a_2_42·b_5_40+ b_2_6·c_2_7·a_1_12·a_3_15
 b_6_60·a_3_10 + a_2_4·b_2_6·b_5_41 + a_6_48·a_3_10 + a_2_42·b_2_62·a_1_1+ c_2_7·a_6_57·a_1_1 + b_2_6·c_2_7·a_1_12·a_3_15
 b_2_5·a_7_71 + b_2_5·b_6_60·a_1_1 + b_2_52·b_2_62·a_1_1 + a_2_4·b_2_6·b_5_41+ a_6_48·a_3_10 + a_2_42·b_5_40 + a_2_4·a_1_12·b_5_41 + a_2_42·b_2_62·a_1_1
 + c_2_7·a_6_57·a_1_1 + b_2_6·c_2_7·a_1_12·a_3_15
 b_6_60·a_3_15 + b_2_6·a_7_71 + b_2_6·b_6_60·a_1_1 + b_2_5·b_2_63·a_1_1 + a_6_57·a_3_10+ b_2_6·a_1_12·b_5_41 + a_2_4·a_6_57·a_1_1
 a_2_3·a_7_71 + a_2_4·a_6_57·a_1_1
   a_6_48·a_3_10 + a_2_4·a_7_71 + a_2_4·a_1_12·b_5_41
   a_6_57·a_3_10 + a_2_4·b_2_62·a_3_15 + a_1_12·a_7_71
   a_5_372
   a_5_37·b_5_40 + b_2_64·a_1_12
   a_5_37·b_5_41 + b_2_6·b_6_60·a_1_12 + b_2_6·a_6_48·a_1_12
   a_3_10·a_7_71 + a_2_4·b_2_6·a_6_48 + a_2_4·b_6_60·a_1_12 + a_2_42·a_1_1·b_5_40
   a_5_37·b_5_41 + a_3_15·a_7_71 + a_2_4·b_2_6·a_1_1·b_5_40 + b_2_6·a_6_48·a_1_12
   b_5_412 + b_2_5·b_2_6·b_6_60 + b_2_52·b_2_63 + b_2_5·b_2_6·a_6_48+ b_2_52·a_1_1·b_5_40 + a_2_4·b_2_5·a_1_1·b_5_40 + a_2_42·b_2_63
 + a_2_4·b_6_60·a_1_12 + a_2_42·a_1_1·b_5_40 + c_8_124·b_1_22 + b_2_64·c_2_7
 + b_2_6·c_2_7·a_1_1·b_5_40 + b_2_63·c_2_7·a_1_12
 b_5_40·b_5_41 + b_2_62·b_6_60 + a_5_37·b_5_41 + b_2_62·a_6_48+ b_2_5·b_2_6·a_1_1·b_5_40 + c_8_124·a_1_1·b_1_2
 b_5_402 + b_2_65 + b_2_62·a_1_1·b_5_40 + b_2_64·a_1_12 + c_8_124·a_1_12
   a_6_57·a_5_37 + b_2_63·a_1_12·a_3_15
   b_6_60·a_5_37 + a_6_48·a_5_37 + b_2_62·a_1_12·b_5_41
   a_6_48·a_5_37 + b_2_6·a_1_12·a_7_71
   a_6_48·b_5_40 + a_6_57·b_5_41 + b_2_62·b_6_60·a_1_1 + b_2_5·b_2_64·a_1_1+ b_2_62·a_1_12·b_5_41 + a_2_4·b_2_63·a_3_15 + a_2_4·b_2_6·a_6_57·a_1_1
 + c_8_124·a_1_12·b_1_2
 b_6_60·b_5_41 + b_2_5·b_2_62·b_5_41 + b_2_52·b_2_6·b_5_40 + a_6_48·b_5_41+ a_2_4·b_2_6·a_7_71 + a_2_4·b_2_5·b_2_63·a_1_1 + a_2_4·b_2_6·a_1_12·b_5_41
 + b_2_62·c_2_7·b_5_40 + b_2_5·c_8_124·b_1_2 + c_8_124·a_1_1·b_1_22
 + b_2_64·c_2_7·a_1_1 + b_2_6·c_2_7·a_1_12·b_5_40
 b_6_60·b_5_40 + b_2_63·b_5_41 + a_6_57·b_5_41 + b_2_62·a_1_12·b_5_41+ b_2_62·a_6_48·a_1_1 + a_2_4·b_2_63·a_3_15 + a_2_4·b_2_6·a_6_57·a_1_1
 + b_2_5·c_8_124·a_1_1
 a_6_57·b_5_40 + b_2_64·a_3_15 + a_2_3·c_8_124·a_1_1
   a_6_48·b_5_41 + b_2_52·b_2_63·a_1_1 + a_2_4·b_2_62·b_5_41+ a_2_4·b_2_5·b_2_6·b_5_40 + a_2_4·b_2_6·a_7_71 + a_2_4·b_2_5·b_2_63·a_1_1
 + a_2_42·b_2_6·b_5_40 + a_2_4·b_2_6·a_1_12·b_5_41 + a_2_42·b_2_63·a_1_1
 + c_8_124·a_1_1·b_1_22 + b_2_63·c_2_7·a_3_15 + b_2_64·c_2_7·a_1_1
 + a_2_4·c_8_124·b_1_2 + b_2_6·c_2_7·a_1_12·b_5_40 + b_2_62·c_2_7·a_1_12·a_3_15
 a_6_57·b_5_41 + b_2_62·a_7_71 + b_2_62·b_6_60·a_1_1 + b_2_5·b_2_64·a_1_1+ a_6_48·a_5_37 + b_2_62·a_1_12·b_5_41 + b_2_62·a_6_48·a_1_1 + a_2_4·b_2_64·a_1_1
 + a_2_4·c_8_124·a_1_1
 a_6_57·a_6_48 + b_2_62·b_6_60·a_1_12 + a_2_4·b_2_62·a_1_1·b_5_40+ a_2_4·b_2_64·a_1_12
 b_5_41·a_7_71 + a_6_48·b_6_60 + a_2_4·b_2_62·a_1_1·b_5_41+ a_2_4·b_2_5·b_2_6·a_1_1·b_5_40 + a_2_42·b_2_64 + a_2_42·b_2_6·a_1_1·b_5_40
 + b_2_64·c_2_7·a_1_12 + b_2_6·c_2_7·a_6_57·a_1_12
 a_5_37·a_7_71 + b_2_62·a_6_48·a_1_12
   b_6_602 + b_2_5·b_2_62·b_6_60 + b_2_52·b_2_64 + a_6_48·b_6_60+ a_2_4·b_2_5·b_2_64 + a_6_482 + a_2_4·b_2_62·a_1_1·b_5_41 + a_2_4·b_2_62·a_6_48
 + b_2_65·c_2_7 + b_2_52·c_8_124 + b_2_62·c_2_7·a_1_1·b_5_40 + b_2_62·c_2_7·a_6_57
 + b_2_5·c_8_124·a_1_1·b_1_2 + a_2_4·b_2_5·c_8_124 + b_2_63·c_2_7·a_1_1·a_3_15
 a_6_572 + b_2_64·a_1_1·a_3_15 + b_2_65·a_1_12 + b_2_62·a_6_57·a_1_12+ a_2_3·c_8_124·a_1_12
 a_6_482 + a_2_4·b_2_62·a_1_1·b_5_41 + a_2_42·b_2_64 + b_2_63·c_2_7·a_1_1·a_3_15+ a_2_4·c_8_124·a_1_1·b_1_2
 b_6_602 + b_2_5·b_2_62·b_6_60 + b_2_52·b_2_64 + b_2_52·b_2_6·a_1_1·b_5_40+ a_2_4·b_2_62·b_6_60 + a_2_4·b_2_5·b_2_6·a_1_1·b_5_40 + a_2_4·b_2_6·b_6_60·a_1_12
 + a_2_42·b_2_6·a_1_1·b_5_40 + b_2_65·c_2_7 + b_2_52·c_8_124 + b_2_64·c_2_7·a_1_12
 + a_2_42·c_8_124
 b_5_40·a_7_71 + a_6_57·b_6_60 + b_2_63·a_1_1·b_5_41 + b_2_5·b_2_62·a_1_1·b_5_40+ a_6_57·a_6_48 + a_2_4·b_2_62·a_1_1·b_5_40 + a_2_4·b_2_62·a_6_57
 + b_2_62·a_6_48·a_1_12 + b_2_5·c_8_124·a_1_12 + a_2_4·c_8_124·a_1_12
 b_5_40·a_7_71 + b_2_63·a_6_48 + a_2_4·b_2_62·a_1_1·b_5_40 + a_2_4·b_2_62·a_6_57+ c_8_124·a_1_1·a_3_10 + b_2_5·c_8_124·a_1_12
 a_6_57·a_7_71 + b_2_63·a_1_12·b_5_41 + a_2_4·b_2_65·a_1_1 + b_2_62·a_1_12·a_7_71
   b_6_60·a_7_71 + b_2_52·b_2_64·a_1_1 + a_2_4·b_2_63·b_5_41+ a_2_4·b_2_5·b_2_62·b_5_40 + a_6_48·a_7_71 + a_2_4·b_2_62·a_7_71
 + a_2_4·b_2_62·b_6_60·a_1_1 + b_2_64·c_2_7·a_3_15 + b_2_65·c_2_7·a_1_1
 + b_2_52·c_8_124·a_1_1 + a_2_4·b_2_6·c_8_124·b_1_2 + b_2_62·c_2_7·a_1_12·b_5_40
 + b_2_63·c_2_7·a_1_12·a_3_15 + a_2_3·c_2_7·c_8_124·a_1_1
 a_6_48·a_7_71 + a_2_4·b_2_62·b_6_60·a_1_1 + a_2_42·b_2_62·b_5_40+ a_2_42·b_2_64·a_1_1 + b_2_62·c_2_7·a_6_57·a_1_1 + a_2_4·b_2_5·c_8_124·a_1_1
 + a_2_42·c_8_124·a_1_1
 a_7_712 + a_2_4·b_2_63·a_1_1·b_5_41 + a_2_42·b_2_65+ a_2_4·b_2_62·b_6_60·a_1_12 + a_2_42·b_2_62·a_1_1·b_5_40
 + b_2_64·c_2_7·a_1_1·a_3_15 + a_2_4·b_2_6·c_8_124·a_1_1·b_1_2
 + b_2_62·c_2_7·a_6_57·a_1_12 + a_2_4·b_2_5·c_8_124·a_1_12
 + a_2_3·c_2_7·c_8_124·a_1_12
 
 
 
  Data used for Benson′s test
   
     Benson′s completion test succeeded in degree 14.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
      c_2_7, a Duflot regular element of degree 2
      c_8_124, a Duflot regular element of degree 8
      b_1_22 + b_2_6 + b_2_5, an element of degree 2
      b_1_22, an element of degree 2
       The Raw Filter Degree Type of that HSOP is [-1, -1, 6, 8, 10].
     The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
     
 
 
  Restriction maps
    Restriction map to the greatest central el. ab. subgp., which is of rank 2
  
       a_1_0 → 0, an element of degree 1
       a_1_1 → 0, an element of degree 1
       b_1_2 → 0, an element of degree 1
       a_2_3 → 0, an element of degree 2
       a_2_4 → 0, an element of degree 2
       b_2_5 → 0, an element of degree 2
       b_2_6 → 0, an element of degree 2
       c_2_7 → c_1_02, an element of degree 2
       a_3_10 → 0, an element of degree 3
       a_3_15 → 0, an element of degree 3
       a_5_37 → 0, an element of degree 5
       b_5_40 → 0, an element of degree 5
       b_5_41 → 0, an element of degree 5
       a_6_57 → 0, an element of degree 6
       a_6_48 → 0, an element of degree 6
       b_6_60 → 0, an element of degree 6
       a_7_71 → 0, an element of degree 7
       c_8_124 → c_1_18, an element of degree 8
       
    Restriction map to a maximal el. ab. subgp. of rank 4
  
       a_1_0 → 0, an element of degree 1
       a_1_1 → 0, an element of degree 1
       b_1_2 → c_1_2, an element of degree 1
       a_2_3 → 0, an element of degree 2
       a_2_4 → 0, an element of degree 2
       b_2_5 → c_1_2·c_1_3, an element of degree 2
       b_2_6 → c_1_32, an element of degree 2
       c_2_7 → c_1_0·c_1_2 + c_1_02, an element of degree 2
       a_3_10 → 0, an element of degree 3
       a_3_15 → 0, an element of degree 3
       a_5_37 → 0, an element of degree 5
       b_5_40 → c_1_35, an element of degree 5
       b_5_41 → c_1_14·c_1_2 + c_1_0·c_1_34, an element of degree 5
       a_6_57 → 0, an element of degree 6
       a_6_48 → 0, an element of degree 6
       b_6_60 → c_1_14·c_1_2·c_1_3 + c_1_0·c_1_35, an element of degree 6
       a_7_71 → 0, an element of degree 7
       c_8_124 → c_1_38 + c_1_14·c_1_34 + c_1_18, an element of degree 8
       
 
 
 
               
 
 |