Cohomology of group number 52 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 16.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (t2  −  t  +  1) · (t3  −  t  +  1)

    (t  −  1)4 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-4,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 27 minimal generators of maximal degree 10:

  1. a_1_0, a nilpotent element of degree 1
  2. b_1_1, an element of degree 1
  3. a_2_1, a nilpotent element of degree 2
  4. b_2_2, an element of degree 2
  5. a_3_2, a nilpotent element of degree 3
  6. a_3_4, a nilpotent element of degree 3
  7. b_3_3, an element of degree 3
  8. b_3_5, an element of degree 3
  9. a_4_7, a nilpotent element of degree 4
  10. a_4_5, a nilpotent element of degree 4
  11. b_4_9, an element of degree 4
  12. a_5_7, a nilpotent element of degree 5
  13. a_5_11, a nilpotent element of degree 5
  14. a_5_14, a nilpotent element of degree 5
  15. b_5_12, an element of degree 5
  16. a_6_3, a nilpotent element of degree 6
  17. a_6_11, a nilpotent element of degree 6
  18. b_6_21, an element of degree 6
  19. a_7_13, a nilpotent element of degree 7
  20. a_7_17, a nilpotent element of degree 7
  21. b_7_28, an element of degree 7
  22. a_8_24, a nilpotent element of degree 8
  23. a_8_22, a nilpotent element of degree 8
  24. c_8_42, a Duflot regular element of degree 8
  25. a_9_29, a nilpotent element of degree 9
  26. a_9_32, a nilpotent element of degree 9
  27. a_10_34, a nilpotent element of degree 10

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 288 minimal relations of maximal degree 20:

  1. a_1_02
  2. a_1_0·b_1_1
  3. a_2_1·a_1_0
  4. a_2_1·b_1_1
  5. b_2_2·a_1_0
  6. a_2_12
  7. a_1_0·a_3_2
  8. a_1_0·a_3_4
  9. b_1_1·a_3_4 + a_2_1·b_2_2
  10. a_1_0·b_3_3
  11. a_1_0·b_3_5 + a_2_1·b_2_2
  12. a_2_1·a_3_2
  13. b_2_2·a_3_4
  14. a_2_1·a_3_4
  15. a_2_1·b_3_3
  16. a_2_1·b_3_5
  17. a_4_7·a_1_0
  18. a_4_7·b_1_1 + b_2_2·a_3_2
  19. a_4_5·a_1_0
  20. b_4_9·a_1_0
  21. a_3_22
  22. a_3_2·a_3_4
  23. a_3_42
  24. a_3_4·b_3_3
  25. a_2_1·a_4_7
  26. a_2_1·a_4_5
  27. a_3_2·b_3_3 + a_4_5·b_1_12 + b_2_2·b_1_1·a_3_2
  28. a_3_4·b_3_5 + a_2_1·b_4_9
  29. b_3_32 + b_1_13·b_3_5 + b_4_9·b_1_12 + b_2_2·b_1_1·b_3_3 + b_2_23
  30. a_1_0·a_5_7
  31. a_3_2·b_3_5 + b_1_1·a_5_7 + b_2_2·a_4_7
  32. a_1_0·a_5_11
  33. a_3_2·b_3_5 + a_3_2·b_3_3 + b_1_1·a_5_11 + b_1_13·a_3_2 + b_2_2·b_1_1·a_3_2 + b_2_2·a_4_7
  34. a_1_0·a_5_14
  35. b_1_1·a_5_14 + b_2_2·a_4_7
  36. a_1_0·b_5_12
  37. b_3_52 + b_3_32 + b_1_1·b_5_12 + b_2_2·b_1_1·b_3_3 + b_2_2·b_4_9 + b_2_23
       + a_3_2·b_3_3 + b_1_13·a_3_2 + b_2_2·b_1_1·a_3_2
  38. a_4_7·a_3_2
  39. a_4_7·a_3_4
  40. a_4_5·a_3_2
  41. a_4_7·b_3_3 + b_2_2·a_4_5·b_1_1 + b_2_22·a_3_2
  42. a_4_5·a_3_4
  43. a_2_1·a_5_7
  44. b_1_12·a_5_7 + b_4_9·a_3_2 + a_4_5·b_3_3 + a_4_7·b_3_5 + b_2_2·a_5_7 + b_2_22·a_3_2
  45. a_4_7·b_3_3 + b_2_2·a_5_11 + b_2_2·a_5_7 + b_2_2·b_1_12·a_3_2 + b_2_22·a_3_2
  46. a_2_1·a_5_11
  47. a_4_7·b_3_5 + b_2_2·a_5_14 + b_2_2·a_5_7
  48. a_2_1·a_5_14
  49. a_2_1·b_5_12
  50. a_6_3·a_1_0
  51. a_6_3·b_1_1 + b_4_9·a_3_2 + a_4_7·b_3_3 + b_2_22·a_3_2
  52. a_6_11·a_1_0
  53. a_6_11·b_1_1 + a_4_7·b_3_5 + b_2_22·a_3_2
  54. b_6_21·a_1_0
  55. b_1_12·b_5_12 + b_1_14·b_3_5 + b_6_21·b_1_1 + b_4_9·b_3_3 + b_2_2·b_5_12 + b_4_9·a_3_2
       + a_4_5·b_3_3 + a_4_5·b_1_13 + b_2_2·a_5_7 + b_2_22·a_3_2
  56. a_4_72
  57. a_4_52
  58. a_4_7·a_4_5
  59. a_3_2·a_5_7
  60. a_3_4·a_5_7
  61. b_3_3·a_5_7 + a_4_5·b_1_1·b_3_5 + b_2_2·b_1_1·a_5_7 + b_2_22·a_4_5
  62. a_3_2·a_5_11
  63. a_3_4·a_5_11
  64. b_3_3·a_5_11 + a_4_5·b_1_1·b_3_5 + a_4_5·b_1_1·b_3_3 + a_4_5·b_1_14
       + b_2_2·b_1_1·a_5_7 + b_2_2·b_1_13·a_3_2 + b_2_22·a_4_5
  65. a_3_2·a_5_14
  66. a_3_4·a_5_14
  67. b_3_3·a_5_14 + b_2_22·a_4_5 + b_2_22·a_4_7
  68. b_3_5·a_5_14 + b_3_5·a_5_11 + a_3_2·b_5_12 + b_4_9·b_1_1·a_3_2 + a_4_5·b_1_1·b_3_5
       + a_4_7·b_4_9
  69. b_3_5·a_5_11 + b_3_5·a_5_7 + a_3_4·b_5_12 + b_4_9·b_1_1·a_3_2 + a_4_5·b_1_1·b_3_5
       + a_4_5·b_1_1·b_3_3 + b_2_22·a_4_7
  70. b_3_5·a_5_11 + b_3_5·a_5_7 + b_4_9·b_1_1·a_3_2 + a_4_5·b_1_1·b_3_5 + a_4_5·b_1_1·b_3_3
       + a_4_7·b_4_9 + b_2_2·a_6_3 + b_2_22·a_4_5 + b_2_22·a_4_7
  71. a_2_1·a_6_3
  72. b_3_5·a_5_14 + b_2_2·a_6_11 + b_2_22·a_4_7
  73. a_2_1·a_6_11
  74. b_3_5·a_5_11 + b_3_5·a_5_7 + b_4_9·b_1_1·a_3_2 + a_4_5·b_1_1·b_3_5 + a_4_5·b_1_1·b_3_3
       + b_2_22·a_4_7 + a_2_1·b_6_21
  75. a_1_0·a_7_13
  76. b_3_5·a_5_14 + b_3_5·a_5_11 + b_1_1·a_7_13 + b_1_15·a_3_2 + b_4_9·b_1_1·a_3_2
       + a_4_5·b_1_14 + a_4_7·b_4_9 + b_2_2·b_1_1·a_5_7 + b_2_2·a_4_5·b_1_12 + b_2_22·a_4_7
  77. a_1_0·a_7_17
  78. b_3_5·a_5_11 + b_3_5·a_5_7 + b_1_1·a_7_17 + b_1_15·a_3_2 + a_4_5·b_1_1·b_3_5
       + a_4_5·b_1_1·b_3_3 + a_4_7·b_4_9 + b_2_2·b_1_1·a_5_7 + b_2_2·a_4_5·b_1_12
       + b_2_22·a_4_7
  79. a_1_0·b_7_28
  80. b_3_3·b_5_12 + b_1_1·b_7_28 + b_1_15·b_3_5 + b_2_2·b_1_1·b_5_12 + b_2_22·b_4_9
       + b_3_5·a_5_14 + b_3_5·a_5_11 + b_4_9·b_1_1·a_3_2 + a_4_5·b_1_1·b_3_3 + a_4_5·b_1_14
       + a_4_7·b_4_9 + b_2_2·b_1_13·a_3_2 + b_2_2·a_4_5·b_1_12
  81. a_4_5·a_5_7
  82. a_4_7·a_5_7
  83. a_4_5·a_5_11
  84. a_4_7·a_5_11
  85. a_4_5·a_5_14
  86. a_4_7·a_5_14
  87. a_6_3·a_3_2
  88. a_6_3·a_3_4
  89. a_6_3·b_3_5 + b_4_9·a_5_14 + b_4_9·a_5_7 + b_2_2·a_4_5·b_3_5
  90. a_6_3·b_3_3 + a_4_5·b_4_9·b_1_1 + b_2_2·b_4_9·a_3_2 + b_2_2·a_4_5·b_3_3
  91. a_6_11·a_3_2
  92. a_6_11·a_3_4
  93. a_6_11·b_3_5 + b_4_9·a_5_14 + a_4_7·b_5_12 + b_2_2·a_4_5·b_3_3 + b_2_22·a_5_7
  94. a_6_11·b_3_3 + b_2_2·a_4_5·b_3_5 + b_2_22·a_5_14 + b_2_22·a_5_7 + b_2_22·a_4_5·b_1_1
       + b_2_23·a_3_2
  95. b_6_21·a_3_4 + b_4_9·a_5_11 + b_4_9·a_5_7 + b_4_9·b_1_12·a_3_2 + a_4_5·b_4_9·b_1_1
  96. a_4_7·b_5_12 + b_2_2·a_7_13 + b_2_2·b_1_14·a_3_2 + b_2_2·a_4_5·b_3_5
       + b_2_2·a_4_5·b_1_13 + b_2_22·a_5_14 + b_2_22·a_5_7 + b_2_22·a_4_5·b_1_1
  97. a_2_1·a_7_13
  98. b_1_12·a_7_13 + b_1_16·a_3_2 + b_6_21·a_3_2 + b_4_9·b_1_12·a_3_2
       + a_4_5·b_1_12·b_3_5 + a_4_5·b_1_12·b_3_3 + a_4_5·b_1_15 + a_4_5·b_4_9·b_1_1
       + a_4_7·b_5_12 + b_2_2·a_4_5·b_3_3 + b_2_2·a_4_5·b_1_13 + b_2_22·a_5_14
       + b_2_23·a_3_2
  99. b_4_9·a_5_14 + b_2_2·a_7_17 + b_2_2·b_1_14·a_3_2 + b_2_2·b_4_9·a_3_2 + b_2_22·a_5_7
       + b_2_22·a_4_5·b_1_1
  100. a_2_1·a_7_17
  101. a_2_1·b_7_28
  102. b_1_12·b_7_28 + b_1_13·b_3_3·b_3_5 + b_1_16·b_3_5 + b_6_21·b_3_3
       + b_4_9·b_1_12·b_3_5 + b_4_92·b_1_1 + b_2_2·b_7_28 + b_2_2·b_6_21·b_1_1
       + b_2_22·b_4_9·b_1_1 + b_6_21·a_3_2 + b_4_9·b_1_12·a_3_2 + a_4_5·b_1_12·b_3_3
       + a_4_5·b_1_15 + a_4_5·b_4_9·b_1_1 + b_2_2·b_1_14·a_3_2 + b_2_2·b_4_9·a_3_2
       + b_2_2·a_4_5·b_3_3 + b_2_2·a_4_5·b_1_13 + b_2_22·b_1_12·a_3_2 + b_2_23·a_3_2
  103. a_8_24·a_1_0
  104. b_1_16·a_3_2 + a_8_24·b_1_1 + b_6_21·a_3_2 + b_4_9·b_1_12·a_3_2 + a_4_5·b_1_12·b_3_5
       + a_4_5·b_1_12·b_3_3 + b_2_2·a_4_5·b_1_13 + b_2_22·a_5_14 + b_2_22·a_5_7
       + b_2_23·a_3_2
  105. a_8_22·a_1_0
  106. a_8_22·b_1_1 + b_6_21·a_3_2 + b_4_9·a_5_7 + b_4_9·b_1_12·a_3_2 + a_4_5·b_5_12
       + a_4_5·b_1_12·b_3_5 + a_4_5·b_4_9·b_1_1 + a_4_7·b_5_12 + b_2_2·b_1_14·a_3_2
       + b_2_22·a_4_5·b_1_1 + b_2_23·a_3_2
  107. a_5_72
  108. a_5_7·a_5_11
  109. a_5_112
  110. a_5_7·a_5_14
  111. a_5_11·a_5_14
  112. a_5_142
  113. a_4_5·a_6_3
  114. a_4_7·a_6_3
  115. a_5_11·b_5_12 + a_5_7·b_5_12 + b_4_9·b_1_1·a_5_7 + a_4_5·b_3_3·b_3_5
       + a_4_5·b_1_1·b_5_12 + a_4_5·b_1_13·b_3_3 + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_22·a_6_11
       + b_2_22·a_6_3 + b_2_23·b_1_1·a_3_2 + b_2_23·a_4_5 + b_2_23·a_4_7 + a_2_1·b_4_92
  116. a_4_5·a_6_11
  117. a_4_7·a_6_11
  118. a_3_2·a_7_13
  119. a_5_14·b_5_12 + a_4_7·b_6_21 + b_2_2·b_1_1·a_7_13 + b_2_2·b_1_15·a_3_2
       + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_1_1·b_3_3
       + b_2_2·a_4_5·b_1_14 + b_2_2·a_4_5·b_4_9 + b_2_22·b_1_1·a_5_7 + b_2_22·a_6_3
       + b_2_22·a_4_5·b_1_12 + b_2_23·a_4_5 + a_2_1·b_4_92
  120. a_3_4·a_7_13
  121. a_5_7·b_5_12 + b_3_5·a_7_13 + b_4_9·b_1_13·a_3_2 + a_4_5·b_1_1·b_5_12
       + a_4_5·b_1_13·b_3_3 + a_4_5·b_4_9·b_1_12 + a_4_7·b_6_21 + b_2_2·b_4_9·b_1_1·a_3_2
       + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_23·b_1_1·a_3_2
  122. a_5_14·b_5_12 + b_3_3·a_7_13 + a_4_5·b_3_3·b_3_5 + a_4_5·b_1_1·b_5_12
       + a_4_5·b_1_13·b_3_3 + a_4_5·b_1_16 + a_4_7·b_6_21 + b_2_2·b_1_15·a_3_2
       + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_4_9
       + b_2_22·b_1_1·a_5_7 + b_2_22·a_6_3 + b_2_23·a_4_5 + a_2_1·b_4_92
  123. a_3_2·a_7_17
  124. a_3_4·a_7_17
  125. a_5_14·b_5_12 + a_5_11·b_5_12 + a_5_7·b_5_12 + b_3_5·a_7_17 + b_4_9·b_1_13·a_3_2
       + b_4_9·a_6_11 + a_4_5·b_3_3·b_3_5 + a_4_5·b_1_1·b_5_12 + a_4_7·b_6_21
       + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_4_9 + b_2_22·a_6_3 + b_2_23·a_4_5
       + a_2_1·b_4_92
  126. b_3_3·a_7_17 + a_4_5·b_1_16 + a_4_5·b_4_9·b_1_12 + b_2_2·b_1_15·a_3_2
       + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_1_1·b_3_3
       + b_2_2·a_4_5·b_4_9 + b_2_22·b_1_1·a_5_7 + b_2_22·a_6_3
  127. a_3_2·b_7_28 + b_4_9·b_1_13·a_3_2 + a_4_5·b_1_1·b_5_12 + a_4_5·b_1_13·b_3_3
       + b_2_22·a_6_3 + b_2_23·b_1_1·a_3_2 + b_2_23·a_4_5
  128. a_3_4·b_7_28 + a_2_1·b_4_92
  129. b_5_122 + b_3_3·b_7_28 + b_1_14·b_3_3·b_3_5 + b_1_17·b_3_5 + b_6_21·b_1_1·b_3_5
       + b_6_21·b_1_1·b_3_3 + b_6_21·b_1_14 + b_4_9·b_3_3·b_3_5 + b_4_9·b_1_13·b_3_5
       + b_4_9·b_1_16 + b_2_2·b_3_5·b_5_12 + b_2_2·b_1_1·b_7_28 + b_2_2·b_1_12·b_3_3·b_3_5
       + b_2_2·b_4_9·b_1_1·b_3_3 + b_2_2·b_4_9·b_1_14 + b_2_2·b_4_92
       + b_2_22·b_1_13·b_3_5 + b_2_22·b_6_21 + a_5_11·b_5_12 + a_5_7·b_5_12
       + b_4_9·b_1_13·a_3_2 + a_4_5·b_1_1·b_5_12 + b_2_2·b_4_9·b_1_1·a_3_2
       + b_2_2·a_4_5·b_1_14 + b_2_22·b_1_1·a_5_7 + b_2_22·a_4_5·b_1_12
       + b_2_23·b_1_1·a_3_2 + b_2_23·a_4_5 + b_2_23·a_4_7 + a_2_1·b_4_92 + c_8_42·b_1_12
  130. a_5_11·b_5_12 + a_5_7·b_5_12 + b_4_9·b_1_1·a_5_7 + a_4_5·b_3_3·b_3_5
       + a_4_5·b_1_1·b_5_12 + a_4_5·b_1_13·b_3_3 + a_4_7·b_6_21 + b_2_2·b_1_15·a_3_2
       + b_2_2·a_8_24 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_1_1·b_3_3 + b_2_22·a_6_3
       + b_2_22·a_4_5·b_1_12 + b_2_23·b_1_1·a_3_2 + b_2_23·a_4_5 + b_2_23·a_4_7
  131. a_2_1·a_8_24
  132. b_3_3·b_7_28 + b_1_14·b_3_3·b_3_5 + b_6_21·b_1_1·b_3_5 + b_6_21·b_1_14
       + b_4_9·b_3_3·b_3_5 + b_4_9·b_1_1·b_5_12 + b_4_9·b_1_13·b_3_3 + b_4_9·b_1_16
       + b_2_2·b_3_5·b_5_12 + b_2_2·b_1_15·b_3_5 + b_2_2·b_6_21·b_1_12
       + b_2_2·b_4_9·b_1_1·b_3_3 + b_2_2·b_4_9·b_1_14 + b_2_22·b_1_13·b_3_5
       + b_2_22·b_6_21 + a_5_14·b_5_12 + a_5_11·b_5_12 + a_5_7·b_5_12 + a_8_24·b_1_12
       + b_4_9·b_1_1·a_5_7 + b_4_9·b_1_13·a_3_2 + a_4_5·b_1_13·b_3_5 + a_4_7·b_6_21
       + b_2_2·a_4_5·b_1_14 + b_2_2·a_4_5·b_4_9 + b_2_22·a_6_3 + b_2_22·a_4_5·b_1_12
       + b_2_23·a_4_7
  133. a_5_14·b_5_12 + b_4_9·b_1_1·a_5_7 + b_4_9·a_6_11 + b_4_9·a_6_3 + a_4_5·b_1_1·b_5_12
       + a_4_5·b_1_13·b_3_5 + a_4_5·b_6_21 + a_4_7·b_6_21 + b_2_2·a_8_22
       + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_22·b_1_13·a_3_2
       + b_2_23·a_4_5 + b_2_23·a_4_7 + a_2_1·b_4_92
  134. a_2_1·a_8_22
  135. a_1_0·a_9_29
  136. a_5_7·b_5_12 + b_1_1·a_9_29 + b_4_9·b_1_13·a_3_2 + a_4_5·b_1_1·b_5_12
       + a_4_5·b_1_13·b_3_5 + a_4_5·b_1_13·b_3_3 + a_4_5·b_1_16 + a_4_5·b_4_9·b_1_12
       + b_2_2·b_1_15·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_5 + b_2_2·a_4_5·b_1_1·b_3_3
       + b_2_2·a_4_5·b_4_9 + b_2_22·b_1_1·a_5_7
  137. a_1_0·a_9_32
  138. b_3_3·b_7_28 + b_1_14·b_3_3·b_3_5 + b_6_21·b_1_1·b_3_5 + b_6_21·b_1_14
       + b_4_9·b_3_3·b_3_5 + b_4_9·b_1_1·b_5_12 + b_4_9·b_1_13·b_3_3 + b_4_9·b_1_16
       + b_2_2·b_3_5·b_5_12 + b_2_2·b_1_15·b_3_5 + b_2_2·b_6_21·b_1_12
       + b_2_2·b_4_9·b_1_1·b_3_3 + b_2_2·b_4_9·b_1_14 + b_2_22·b_1_13·b_3_5
       + b_2_22·b_6_21 + a_5_14·b_5_12 + b_1_1·a_9_32 + b_4_9·b_1_13·a_3_2
       + a_4_5·b_1_1·b_5_12 + a_4_5·b_1_13·b_3_5 + b_2_2·b_1_15·a_3_2
       + b_2_2·b_4_9·b_1_1·a_3_2 + b_2_2·a_4_5·b_1_1·b_3_3 + b_2_2·a_4_5·b_4_9
       + b_2_22·b_1_1·a_5_7 + b_2_22·a_6_3 + b_2_23·a_4_7
  139. a_6_3·a_5_7
  140. a_6_3·a_5_11
  141. a_6_3·a_5_14
  142. a_6_11·a_5_7
  143. a_6_11·a_5_11
  144. a_6_11·a_5_14
  145. a_4_5·a_7_13
  146. b_6_21·a_5_11 + b_6_21·a_5_7 + a_6_3·b_5_12 + b_4_9·a_7_13 + b_4_92·a_3_2
       + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1 + a_4_5·b_4_9·b_3_5 + a_4_5·b_4_9·b_3_3
       + b_2_2·b_6_21·a_3_2 + b_2_2·b_4_9·a_5_7 + b_2_2·b_4_9·b_1_12·a_3_2
       + b_2_2·a_4_5·b_5_12 + b_2_2·a_4_5·b_1_12·b_3_3 + b_2_22·a_7_13
       + b_2_22·b_1_14·a_3_2 + b_2_22·b_4_9·a_3_2 + b_2_22·a_4_5·b_3_5
       + b_2_22·a_4_5·b_1_13 + b_2_23·a_4_5·b_1_1 + b_2_24·a_3_2
  147. a_4_7·a_7_13
  148. b_6_21·a_5_11 + b_6_21·a_5_7 + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_4 + b_4_92·a_3_2
       + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1 + a_4_5·b_4_9·b_3_3
       + a_4_5·b_4_9·b_1_13 + b_2_2·b_6_21·a_3_2 + b_2_2·b_4_9·b_1_12·a_3_2
       + b_2_2·a_4_5·b_1_12·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_1 + b_2_22·a_7_17 + b_2_22·a_7_13
       + b_2_22·a_4_5·b_3_5 + b_2_22·a_4_5·b_1_13 + b_2_23·a_5_7 + b_2_24·a_3_2
  149. a_4_5·a_7_17
  150. a_4_7·a_7_17
  151. b_6_21·a_5_11 + a_6_11·b_5_12 + a_6_3·b_5_12 + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_4
       + a_4_5·b_7_28 + a_4_5·b_1_14·b_3_5 + a_4_5·b_6_21·b_1_1 + a_4_5·b_4_9·b_3_5
       + a_4_5·b_4_9·b_1_13 + b_2_2·b_6_21·a_3_2 + b_2_2·b_4_9·a_5_7
       + b_2_2·b_4_9·b_1_12·a_3_2 + b_2_2·a_4_5·b_1_12·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_1
       + b_2_22·a_7_13 + b_2_22·b_1_14·a_3_2 + b_2_22·a_4_5·b_3_5 + b_2_22·a_4_5·b_3_3
       + b_2_22·a_4_5·b_1_13 + b_2_23·a_5_7 + b_2_23·a_4_5·b_1_1 + b_2_24·a_3_2
  152. b_6_21·a_5_11 + b_6_21·a_5_7 + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_4 + b_4_92·a_3_2
       + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1 + a_4_5·b_4_9·b_3_3
       + a_4_5·b_4_9·b_1_13 + a_4_7·b_7_28 + b_2_2·b_6_21·a_3_2 + b_2_2·a_4_5·b_5_12
       + b_2_2·a_4_5·b_4_9·b_1_1 + b_2_22·a_7_13 + b_2_22·b_1_14·a_3_2
       + b_2_22·b_4_9·a_3_2 + b_2_22·a_4_5·b_3_5 + b_2_22·a_4_5·b_1_13
       + b_2_23·a_4_5·b_1_1
  153. a_8_24·a_3_2
  154. b_1_18·b_3_5 + b_6_21·b_5_12 + b_6_21·b_1_12·b_3_5 + b_6_21·b_1_12·b_3_3
       + b_6_21·b_1_15 + b_4_9·b_7_28 + b_4_9·b_1_1·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_5
       + b_4_9·b_1_17 + b_4_9·b_6_21·b_1_1 + b_4_92·b_3_3 + b_2_2·b_1_1·b_3_5·b_5_12
       + b_2_2·b_4_9·b_5_12 + b_2_2·b_4_9·b_1_15 + b_2_22·b_1_1·b_3_3·b_3_5
       + b_2_22·b_6_21·b_1_1 + b_2_22·b_4_9·b_3_3 + b_2_23·b_5_12 + b_2_23·b_4_9·b_1_1
       + b_6_21·a_5_14 + b_6_21·a_5_11 + a_6_3·b_5_12 + b_4_92·a_3_4 + a_4_5·b_1_14·b_3_5
       + a_4_5·b_6_21·b_1_1 + a_4_5·b_4_9·b_3_3 + b_2_2·a_8_24·b_1_1 + b_2_2·b_6_21·a_3_2
       + b_2_2·b_4_9·a_5_7 + b_2_2·a_4_5·b_1_12·b_3_5 + b_2_2·a_4_5·b_1_12·b_3_3
       + b_2_2·a_4_5·b_1_15 + b_2_22·b_4_9·a_3_2 + b_2_22·a_4_5·b_3_3 + b_2_23·a_5_14
       + b_2_23·b_1_12·a_3_2 + c_8_42·b_1_13 + b_2_2·c_8_42·b_1_1
  155. a_8_24·a_3_4
  156. a_8_24·b_3_5 + b_6_21·a_5_14 + b_6_21·a_5_7 + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_2
       + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_1_14·b_3_3 + a_4_5·b_6_21·b_1_1
       + a_4_5·b_4_9·b_1_13 + b_2_2·a_4_5·b_5_12 + b_2_2·a_4_5·b_1_12·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1 + b_2_22·a_7_13 + b_2_22·b_1_14·a_3_2
       + b_2_22·a_4_5·b_3_5 + b_2_22·a_4_5·b_3_3 + b_2_22·a_4_5·b_1_13 + b_2_23·a_5_14
       + b_2_23·b_1_12·a_3_2 + b_2_23·a_4_5·b_1_1
  157. b_1_18·b_3_5 + b_6_21·b_5_12 + b_6_21·b_1_12·b_3_5 + b_6_21·b_1_12·b_3_3
       + b_6_21·b_1_15 + b_4_9·b_7_28 + b_4_9·b_1_1·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_5
       + b_4_9·b_1_17 + b_4_9·b_6_21·b_1_1 + b_4_92·b_3_3 + b_2_2·b_1_1·b_3_5·b_5_12
       + b_2_2·b_4_9·b_5_12 + b_2_2·b_4_9·b_1_15 + b_2_22·b_1_1·b_3_3·b_3_5
       + b_2_22·b_6_21·b_1_1 + b_2_22·b_4_9·b_3_3 + b_2_23·b_5_12 + b_2_23·b_4_9·b_1_1
       + a_8_24·b_3_3 + b_6_21·a_5_14 + b_6_21·a_5_11 + a_6_3·b_5_12 + b_4_92·a_3_4
       + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_1_17 + a_4_5·b_4_9·b_3_3 + b_2_2·b_6_21·a_3_2
       + b_2_2·b_4_9·a_5_7 + b_2_2·a_4_5·b_1_15 + b_2_22·b_4_9·a_3_2 + b_2_22·a_4_5·b_3_5
       + b_2_22·a_4_5·b_3_3 + b_2_22·a_4_5·b_1_13 + b_2_23·a_5_14 + b_2_23·b_1_12·a_3_2
       + c_8_42·b_1_13 + b_2_2·c_8_42·b_1_1
  158. a_8_22·a_3_2
  159. a_8_22·a_3_4
  160. a_8_22·b_3_3 + b_6_21·a_5_11 + a_6_11·b_5_12 + a_6_3·b_5_12 + b_4_9·b_1_14·a_3_2
       + b_4_92·a_3_4 + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_4_9·b_3_3
       + b_2_2·a_4_5·b_1_12·b_3_3 + b_2_2·a_4_5·b_1_15 + b_2_2·a_4_5·b_4_9·b_1_1
       + b_2_22·b_1_14·a_3_2 + b_2_23·a_5_14 + b_2_23·a_4_5·b_1_1
  161. b_6_21·a_5_14 + b_6_21·a_5_11 + b_6_21·a_5_7 + a_6_11·b_5_12 + b_4_9·b_1_14·a_3_2
       + b_4_92·a_3_4 + b_4_92·a_3_2 + a_4_5·b_1_1·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1
       + a_4_5·b_4_9·b_3_3 + a_4_5·b_4_9·b_1_13 + b_2_2·a_9_29 + b_2_2·b_6_21·a_3_2
       + b_2_2·a_4_5·b_5_12 + b_2_2·a_4_5·b_1_12·b_3_5 + b_2_2·a_4_5·b_1_15
       + b_2_22·a_7_13 + b_2_22·a_4_5·b_1_13 + b_2_23·a_5_14 + b_2_23·a_5_7
       + b_2_23·a_4_5·b_1_1 + b_2_24·a_3_2
  162. a_2_1·a_9_29
  163. b_1_18·b_3_5 + b_6_21·b_5_12 + b_6_21·b_1_12·b_3_5 + b_6_21·b_1_12·b_3_3
       + b_6_21·b_1_15 + b_4_9·b_7_28 + b_4_9·b_1_1·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_5
       + b_4_9·b_1_17 + b_4_9·b_6_21·b_1_1 + b_4_92·b_3_3 + b_2_2·b_1_1·b_3_5·b_5_12
       + b_2_2·b_4_9·b_5_12 + b_2_2·b_4_9·b_1_15 + b_2_22·b_1_1·b_3_3·b_3_5
       + b_2_22·b_6_21·b_1_1 + b_2_22·b_4_9·b_3_3 + b_2_23·b_5_12 + b_2_23·b_4_9·b_1_1
       + b_1_12·a_9_29 + b_6_21·a_5_11 + b_6_21·a_5_7 + a_6_11·b_5_12 + a_6_3·b_5_12
       + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_4 + b_4_92·a_3_2 + a_4_5·b_1_1·b_3_3·b_3_5
       + a_4_5·b_1_14·b_3_5 + a_4_5·b_1_14·b_3_3 + a_4_5·b_1_17 + a_4_5·b_4_9·b_3_5
       + a_4_5·b_4_9·b_3_3 + a_4_5·b_4_9·b_1_13 + b_2_2·b_4_9·b_1_12·a_3_2
       + b_2_2·a_4_5·b_5_12 + b_2_2·a_4_5·b_1_12·b_3_5 + b_2_2·a_4_5·b_1_12·b_3_3
       + b_2_2·a_4_5·b_1_15 + b_2_2·a_4_5·b_4_9·b_1_1 + b_2_22·a_4_5·b_1_13
       + b_2_23·b_1_12·a_3_2 + c_8_42·b_1_13 + b_2_2·c_8_42·b_1_1
  164. b_1_18·b_3_5 + b_6_21·b_5_12 + b_6_21·b_1_12·b_3_5 + b_6_21·b_1_12·b_3_3
       + b_6_21·b_1_15 + b_4_9·b_7_28 + b_4_9·b_1_1·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_5
       + b_4_9·b_1_17 + b_4_9·b_6_21·b_1_1 + b_4_92·b_3_3 + b_2_2·b_1_1·b_3_5·b_5_12
       + b_2_2·b_4_9·b_5_12 + b_2_2·b_4_9·b_1_15 + b_2_22·b_1_1·b_3_3·b_3_5
       + b_2_22·b_6_21·b_1_1 + b_2_22·b_4_9·b_3_3 + b_2_23·b_5_12 + b_2_23·b_4_9·b_1_1
       + b_6_21·a_5_11 + a_6_3·b_5_12 + b_4_92·a_3_4 + a_4_5·b_1_14·b_3_5 + a_4_5·b_6_21·b_1_1
       + a_4_5·b_4_9·b_3_3 + b_2_2·a_9_32 + b_2_2·b_4_9·b_1_12·a_3_2
       + b_2_2·a_4_5·b_1_12·b_3_5 + b_2_2·a_4_5·b_1_15 + b_2_2·a_4_5·b_4_9·b_1_1
       + b_2_22·a_7_13 + b_2_22·b_4_9·a_3_2 + b_2_22·a_4_5·b_3_5 + b_2_23·b_1_12·a_3_2
       + b_2_24·a_3_2 + c_8_42·b_1_13 + b_2_2·c_8_42·b_1_1
  165. a_2_1·a_9_32
  166. a_10_34·a_1_0
  167. a_10_34·b_1_1 + a_6_11·b_5_12 + a_6_3·b_5_12 + b_4_9·b_1_14·a_3_2 + b_4_92·a_3_2
       + a_4_5·b_1_17 + a_4_5·b_4_9·b_3_5 + a_4_5·b_4_9·b_3_3 + b_2_2·b_4_9·b_1_12·a_3_2
       + b_2_2·a_4_5·b_1_12·b_3_5 + b_2_2·a_4_5·b_1_12·b_3_3 + b_2_2·a_4_5·b_1_15
       + b_2_22·a_4_5·b_3_3 + b_2_23·a_5_7 + b_2_23·b_1_12·a_3_2 + b_2_24·a_3_2
  168. a_6_32
  169. a_6_3·a_6_11
  170. a_6_112
  171. a_5_7·a_7_13
  172. a_5_11·a_7_13
  173. a_5_14·a_7_13
  174. a_5_7·a_7_17
  175. a_5_11·a_7_17
  176. a_5_14·a_7_17
  177. a_5_11·b_7_28 + a_5_7·b_7_28 + b_4_9·b_1_15·a_3_2 + a_4_5·b_1_1·b_7_28
       + a_4_5·b_1_15·b_3_5 + a_4_5·b_1_15·b_3_3 + a_4_5·b_6_21·b_1_12
       + a_4_5·b_4_9·b_1_1·b_3_3 + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_22·b_4_9·b_1_1·a_3_2
       + b_2_23·b_1_13·a_3_2 + a_2_1·b_4_9·b_6_21
  178. a_5_14·b_7_28 + a_5_7·b_7_28 + b_4_92·b_1_1·a_3_2 + a_4_5·b_3_5·b_5_12
       + a_4_5·b_1_12·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_1·b_3_3 + b_2_2·b_4_9·a_6_11
       + b_2_23·b_1_1·a_5_7 + b_2_24·a_4_7
  179. b_6_21·b_1_1·b_5_12 + b_6_21·b_1_13·b_3_5 + b_6_212 + b_4_9·b_1_1·b_7_28
       + b_4_9·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_15·b_3_5 + b_4_92·b_1_1·b_3_5 + b_4_93
       + b_2_2·b_1_17·b_3_5 + b_2_2·b_6_21·b_1_1·b_3_5 + b_2_2·b_6_21·b_1_1·b_3_3
       + b_2_2·b_6_21·b_1_14 + b_2_2·b_4_9·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_1·b_5_12
       + b_2_2·b_4_9·b_1_16 + b_2_2·b_4_9·b_6_21 + b_2_22·b_3_5·b_5_12
       + b_2_22·b_4_9·b_1_14 + b_2_22·b_4_92 + b_2_23·b_3_3·b_3_5
       + b_2_23·b_1_1·b_5_12 + b_2_23·b_1_13·b_3_5 + b_2_24·b_4_9 + b_5_12·a_7_13
       + a_5_7·b_7_28 + b_4_9·b_1_1·a_7_13 + a_4_5·b_1_1·b_7_28 + a_4_5·b_1_12·b_3_3·b_3_5
       + a_4_5·b_6_21·b_1_12 + a_4_5·b_4_9·b_1_1·b_3_3 + a_4_5·b_4_9·b_1_14
       + b_2_2·b_4_9·a_6_11 + b_2_2·b_4_9·a_6_3 + b_2_2·a_4_5·b_3_3·b_3_5
       + b_2_22·b_1_15·a_3_2 + b_2_22·b_4_9·b_1_1·a_3_2 + b_2_22·a_4_5·b_1_1·b_3_3
       + b_2_22·a_4_5·b_1_14 + b_2_22·a_4_5·b_4_9 + b_2_23·b_1_1·a_5_7 + b_2_23·a_6_11
       + b_2_24·b_1_1·a_3_2 + b_2_24·a_4_7 + b_2_2·c_8_42·b_1_12 + b_2_22·c_8_42
       + c_8_42·b_1_1·a_3_2
  180. b_5_12·a_7_17 + b_5_12·a_7_13 + a_5_7·b_7_28 + a_6_3·b_6_21 + b_4_9·b_1_1·a_7_13
       + b_4_92·b_1_1·a_3_2 + a_4_5·b_1_12·b_3_3·b_3_5 + a_4_5·b_1_15·b_3_5
       + a_4_5·b_1_15·b_3_3 + a_4_5·b_4_9·b_1_1·b_3_5 + a_4_5·b_4_92
       + b_2_2·b_4_9·b_1_13·a_3_2 + b_2_2·b_4_9·a_6_11 + b_2_2·b_4_9·a_6_3
       + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_4_9·b_1_12 + b_2_22·b_1_1·a_7_13
       + b_2_22·a_8_24 + b_2_22·a_4_5·b_1_14 + b_2_23·b_1_13·a_3_2 + b_2_23·a_6_11
       + b_2_24·a_4_7 + c_8_42·b_1_1·a_3_2
  181. b_5_12·b_7_28 + b_1_16·b_3_3·b_3_5 + b_6_21·b_1_1·b_5_12 + b_6_21·b_1_13·b_3_5
       + b_6_21·b_1_16 + b_6_212 + b_4_9·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_15·b_3_5
       + b_4_9·b_1_15·b_3_3 + b_4_9·b_1_18 + b_4_9·b_6_21·b_1_12 + b_4_92·b_1_1·b_3_5
       + b_4_92·b_1_14 + b_4_93 + b_2_2·b_1_17·b_3_5 + b_2_2·b_6_21·b_1_1·b_3_5
       + b_2_2·b_6_21·b_1_14 + b_2_2·b_4_9·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_1·b_5_12
       + b_2_2·b_4_9·b_1_13·b_3_5 + b_2_2·b_4_9·b_1_16 + b_2_22·b_3_5·b_5_12
       + b_2_22·b_1_1·b_7_28 + b_2_22·b_1_15·b_3_5 + b_2_22·b_6_21·b_1_12
       + b_2_22·b_4_92 + b_2_23·b_3_3·b_3_5 + b_2_23·b_4_9·b_1_12 + b_2_24·b_1_1·b_3_5
       + b_2_24·b_4_9 + b_5_12·a_7_13 + a_8_24·b_1_14 + b_4_9·b_1_1·a_7_13
       + a_4_5·b_1_1·b_7_28 + a_4_5·b_1_15·b_3_3 + a_4_5·b_1_18 + a_4_5·b_4_9·b_1_1·b_3_3
       + b_2_2·a_8_24·b_1_12 + b_2_2·b_4_9·b_1_13·a_3_2 + b_2_2·b_4_9·a_6_11
       + b_2_2·b_4_9·a_6_3 + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_1_13·b_3_5
       + b_2_2·a_4_5·b_6_21 + b_2_2·a_4_5·b_4_9·b_1_12 + b_2_22·b_4_9·b_1_1·a_3_2
       + b_2_22·a_4_5·b_1_1·b_3_3 + b_2_24·b_1_1·a_3_2 + c_8_42·b_1_1·b_3_3 + b_2_22·c_8_42
  182. a_4_5·a_8_24
  183. a_6_3·b_6_21 + b_4_9·b_1_15·a_3_2 + b_4_9·a_8_24 + b_4_92·b_1_1·a_3_2
       + a_4_5·b_4_9·b_1_1·b_3_5 + a_4_5·b_4_9·b_1_1·b_3_3 + b_2_2·b_4_9·a_6_11
       + b_2_2·a_4_5·b_6_21 + b_2_2·a_4_5·b_4_9·b_1_12 + a_2_1·b_2_2·c_8_42
  184. a_4_7·a_8_24
  185. a_5_7·b_7_28 + b_4_92·b_1_1·a_3_2 + a_4_5·b_3_5·b_5_12 + a_4_5·b_1_12·b_3_3·b_3_5
       + a_4_5·b_4_9·b_1_1·b_3_3 + b_2_22·b_1_1·a_7_13 + b_2_22·b_1_15·a_3_2
       + b_2_22·a_8_22 + b_2_22·b_4_9·b_1_1·a_3_2 + b_2_22·a_4_5·b_1_14
       + b_2_23·b_1_13·a_3_2 + b_2_23·a_4_5·b_1_12 + b_2_24·a_4_5 + b_2_24·a_4_7
  186. a_4_5·a_8_22
  187. a_4_7·a_8_22
  188. a_3_2·a_9_29
  189. b_5_12·a_7_17 + a_6_3·b_6_21 + a_4_5·b_1_12·b_3_3·b_3_5 + a_4_5·b_1_15·b_3_3
       + a_4_5·b_4_92 + b_2_2·b_1_1·a_9_29 + b_2_2·b_4_9·a_6_3 + b_2_2·a_4_5·b_1_13·b_3_5
       + b_2_2·a_4_5·b_1_13·b_3_3 + b_2_2·a_4_5·b_1_16 + b_2_2·a_4_5·b_6_21
       + b_2_2·a_4_5·b_4_9·b_1_12 + b_2_22·b_1_15·a_3_2 + b_2_22·a_4_5·b_1_1·b_3_5
       + b_2_22·a_4_5·b_1_1·b_3_3 + b_2_23·b_1_13·a_3_2 + b_2_24·a_4_7
       + a_2_1·b_4_9·b_6_21
  190. a_3_4·a_9_29
  191. b_5_12·a_7_13 + b_3_5·a_9_29 + a_6_11·b_6_21 + a_6_3·b_6_21 + b_4_9·b_1_1·a_7_13
       + b_4_9·b_1_15·a_3_2 + b_4_92·b_1_1·a_3_2 + a_4_5·b_1_1·b_7_28 + a_4_5·b_1_15·b_3_5
       + a_4_5·b_1_15·b_3_3 + a_4_5·b_4_9·b_1_1·b_3_3 + a_4_5·b_4_92 + b_2_2·b_4_9·a_6_11
       + b_2_2·b_4_9·a_6_3 + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_1_13·b_3_5
       + b_2_2·a_4_5·b_1_13·b_3_3 + b_2_2·a_4_5·b_6_21 + b_2_2·a_4_5·b_4_9·b_1_12
       + b_2_22·b_4_9·b_1_1·a_3_2 + b_2_23·b_1_1·a_5_7 + b_2_23·b_1_13·a_3_2
       + b_2_24·b_1_1·a_3_2 + b_2_24·a_4_7 + a_2_1·b_4_9·b_6_21
  192. b_5_12·a_7_17 + b_3_3·a_9_29 + a_6_3·b_6_21 + a_4_5·b_3_5·b_5_12 + a_4_5·b_1_1·b_7_28
       + a_4_5·b_4_9·b_1_1·b_3_3 + a_4_5·b_4_92 + b_2_2·b_4_9·a_6_3
       + b_2_2·a_4_5·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_1_13·b_3_3
       + b_2_2·a_4_5·b_1_16 + b_2_2·a_4_5·b_4_9·b_1_12 + b_2_22·b_1_15·a_3_2
       + b_2_22·a_4_5·b_1_1·b_3_5 + b_2_22·a_4_5·b_1_1·b_3_3 + b_2_23·b_1_13·a_3_2
       + b_2_23·a_4_5·b_1_12 + b_2_24·a_4_7 + a_2_1·b_4_9·b_6_21
  193. a_3_2·a_9_32
  194. a_3_4·a_9_32
  195. b_5_12·a_7_17 + a_5_7·b_7_28 + b_3_5·a_9_32 + a_6_11·b_6_21 + a_6_3·b_6_21
       + b_4_9·b_1_1·a_7_13 + b_4_92·b_1_1·a_3_2 + a_4_5·b_3_5·b_5_12 + a_4_5·b_6_21·b_1_12
       + a_4_5·b_4_9·b_1_1·b_3_3 + a_4_5·b_4_92 + b_2_2·b_4_9·a_6_3
       + b_2_2·a_4_5·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_1_13·b_3_5
       + b_2_2·a_4_5·b_1_13·b_3_3 + b_2_22·b_1_1·a_7_13 + b_2_22·b_1_15·a_3_2
       + b_2_22·a_4_5·b_1_14 + b_2_23·b_1_1·a_5_7 + b_2_23·a_6_11 + b_2_23·a_6_3
       + b_2_23·a_4_5·b_1_12 + b_2_24·b_1_1·a_3_2 + b_2_24·a_4_5 + a_2_1·b_2_2·c_8_42
  196. b_5_12·b_7_28 + b_1_16·b_3_3·b_3_5 + b_6_21·b_1_1·b_5_12 + b_6_21·b_1_13·b_3_5
       + b_6_21·b_1_16 + b_6_212 + b_4_9·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_15·b_3_5
       + b_4_9·b_1_15·b_3_3 + b_4_9·b_1_18 + b_4_9·b_6_21·b_1_12 + b_4_92·b_1_1·b_3_5
       + b_4_92·b_1_14 + b_4_93 + b_2_2·b_1_17·b_3_5 + b_2_2·b_6_21·b_1_1·b_3_5
       + b_2_2·b_6_21·b_1_14 + b_2_2·b_4_9·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_1·b_5_12
       + b_2_2·b_4_9·b_1_13·b_3_5 + b_2_2·b_4_9·b_1_16 + b_2_22·b_3_5·b_5_12
       + b_2_22·b_1_1·b_7_28 + b_2_22·b_1_15·b_3_5 + b_2_22·b_6_21·b_1_12
       + b_2_22·b_4_92 + b_2_23·b_3_3·b_3_5 + b_2_23·b_4_9·b_1_12 + b_2_24·b_1_1·b_3_5
       + b_2_24·b_4_9 + b_5_12·a_7_17 + a_5_7·b_7_28 + b_3_3·a_9_32 + a_8_24·b_1_14
       + a_6_3·b_6_21 + b_4_92·b_1_1·a_3_2 + a_4_5·b_1_1·b_7_28 + a_4_5·b_1_15·b_3_5
       + a_4_5·b_4_92 + b_2_2·a_4_5·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_1·b_5_12
       + b_2_2·a_4_5·b_1_13·b_3_5 + b_2_2·a_4_5·b_1_13·b_3_3 + b_2_2·a_4_5·b_1_16
       + b_2_22·b_1_1·a_7_13 + b_2_22·a_4_5·b_1_1·b_3_5 + b_2_22·a_4_5·b_4_9
       + b_2_23·b_1_1·a_5_7 + b_2_23·b_1_13·a_3_2 + b_2_23·a_6_11 + b_2_23·a_6_3
       + b_2_23·a_4_5·b_1_12 + b_2_24·a_4_5 + c_8_42·b_1_1·b_3_3 + b_2_22·c_8_42
       + c_8_42·b_1_1·a_3_2
  197. b_5_12·a_7_13 + a_5_7·b_7_28 + a_6_11·b_6_21 + a_6_3·b_6_21 + b_4_9·b_1_15·a_3_2
       + a_4_5·b_1_15·b_3_5 + a_4_5·b_4_9·b_1_1·b_3_3 + a_4_5·b_4_9·b_1_14 + a_4_5·b_4_92
       + b_2_2·a_10_34 + b_2_2·b_4_9·b_1_13·a_3_2 + b_2_2·a_4_5·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_1·b_5_12 + b_2_2·a_4_5·b_1_13·b_3_5 + b_2_2·a_4_5·b_1_16
       + b_2_2·a_4_5·b_6_21 + b_2_22·b_1_1·a_7_13 + b_2_22·b_1_15·a_3_2
       + b_2_22·a_4_5·b_4_9 + b_2_23·a_6_3 + b_2_23·a_4_5·b_1_12 + b_2_24·b_1_1·a_3_2
       + b_2_24·a_4_5 + a_2_1·b_4_9·b_6_21 + c_8_42·b_1_1·a_3_2 + a_2_1·b_2_2·c_8_42
  198. a_2_1·a_10_34
  199. a_6_3·a_7_13
  200. a_6_11·a_7_13
  201. a_6_3·a_7_17
  202. a_6_11·a_7_17
  203. a_6_3·b_7_28 + b_4_92·b_1_12·a_3_2 + a_4_5·b_4_9·b_5_12 + a_4_5·b_4_9·b_1_12·b_3_3
       + b_2_2·b_4_9·a_7_17 + b_2_2·b_4_9·b_1_14·a_3_2 + b_2_2·b_4_92·a_3_2
       + b_2_2·a_4_5·b_7_28 + b_2_22·b_4_9·a_5_7 + b_2_22·a_4_5·b_4_9·b_1_1
       + b_2_23·b_4_9·a_3_2
  204. a_8_24·a_5_7
  205. a_8_24·a_5_11
  206. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + a_8_24·b_5_12 + a_6_11·b_7_28
       + b_4_9·a_8_24·b_1_1 + a_4_5·b_1_13·b_3_3·b_3_5 + a_4_5·b_1_16·b_3_3
       + a_4_5·b_6_21·b_3_5 + a_4_5·b_6_21·b_1_13 + a_4_5·b_4_9·b_1_15
       + b_2_2·a_8_24·b_1_13 + b_2_2·a_4_5·b_1_14·b_3_3 + b_2_2·a_4_5·b_1_17
       + b_2_2·a_4_5·b_4_9·b_3_5 + b_2_2·a_4_5·b_4_9·b_3_3 + b_2_22·b_6_21·a_3_2
       + b_2_22·b_4_9·a_5_7 + b_2_22·a_4_5·b_1_12·b_3_3 + b_2_23·a_7_17 + b_2_23·a_7_13
       + b_2_23·a_4_5·b_3_5 + b_2_23·a_4_5·b_1_13 + b_2_25·a_3_2 + c_8_42·b_1_12·b_3_3
       + b_2_2·c_8_42·b_3_3
  207. a_8_24·a_5_14
  208. a_8_22·a_5_7
  209. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + b_6_21·a_7_13
       + b_4_92·a_5_11 + b_4_92·a_5_7 + b_4_92·b_1_12·a_3_2 + a_4_5·b_1_1·b_3_5·b_5_12
       + a_4_5·b_6_21·b_3_3 + a_4_5·b_4_92·b_1_1 + b_2_2·a_8_22·b_3_5 + b_2_2·a_8_24·b_1_13
       + b_2_2·b_4_9·a_7_17 + b_2_2·b_4_92·a_3_2 + b_2_2·a_4_5·b_7_28 + b_2_2·a_4_5·b_1_17
       + b_2_2·a_4_5·b_6_21·b_1_1 + b_2_22·b_6_21·a_3_2 + b_2_22·b_4_9·a_5_7
       + b_2_22·b_4_9·b_1_12·a_3_2 + b_2_22·a_4_5·b_1_12·b_3_3 + b_2_23·a_7_17
       + b_2_23·a_4_5·b_3_5 + b_2_24·b_1_12·a_3_2 + b_2_24·a_4_5·b_1_1 + b_2_25·a_3_2
       + c_8_42·b_1_12·b_3_3 + b_2_2·c_8_42·b_3_3
  210. a_8_22·a_5_11
  211. a_8_22·a_5_14
  212. b_6_21·a_7_13 + b_4_92·a_5_11 + b_4_92·a_5_7 + b_4_92·b_1_12·a_3_2
       + a_4_5·b_1_16·b_3_3 + a_4_5·b_6_21·b_3_5 + a_4_5·b_6_21·b_3_3 + a_4_5·b_4_9·b_5_12
       + a_4_5·b_4_9·b_1_12·b_3_5 + b_2_2·b_4_9·a_7_17 + b_2_2·b_4_9·a_7_13
       + b_2_2·b_4_92·a_3_2 + b_2_2·a_4_5·b_6_21·b_1_1 + b_2_2·a_4_5·b_4_9·b_3_3
       + b_2_22·a_9_29 + b_2_22·b_4_9·a_5_7 + b_2_22·a_4_5·b_5_12 + b_2_22·a_4_5·b_1_15
       + b_2_22·a_4_5·b_4_9·b_1_1 + b_2_23·a_7_13 + b_2_23·b_1_14·a_3_2
       + b_2_23·b_4_9·a_3_2 + b_2_23·a_4_5·b_3_3 + b_2_23·a_4_5·b_1_13 + b_2_24·a_5_14
       + b_2_24·a_4_5·b_1_1 + b_2_25·a_3_2 + c_8_42·b_1_12·a_3_2 + b_2_2·c_8_42·a_3_2
  213. a_4_5·a_9_29
  214. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + a_8_22·b_5_12 + a_8_24·b_5_12
       + a_6_11·b_7_28 + b_4_9·a_9_29 + a_4_5·b_1_1·b_3_5·b_5_12 + a_4_5·b_1_16·b_3_5
       + a_4_5·b_6_21·b_3_5 + a_4_5·b_4_9·b_1_12·b_3_3 + a_4_5·b_4_9·b_1_15
       + a_4_5·b_4_92·b_1_1 + b_2_2·a_8_24·b_1_13 + b_2_2·b_4_92·a_3_2
       + b_2_2·a_4_5·b_1_17 + b_2_2·a_4_5·b_4_9·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_13
       + b_2_22·b_6_21·a_3_2 + b_2_22·b_4_9·a_5_7 + b_2_22·a_4_5·b_5_12 + b_2_23·a_7_17
       + b_2_23·a_7_13 + b_2_23·b_1_14·a_3_2 + b_2_23·a_4_5·b_3_5 + b_2_23·a_4_5·b_1_13
       + b_2_24·a_5_14 + b_2_24·a_5_7 + b_2_24·b_1_12·a_3_2 + c_8_42·b_1_12·b_3_3
       + b_2_2·c_8_42·b_3_3 + c_8_42·b_1_12·a_3_2 + a_4_5·c_8_42·b_1_1
  215. a_4_7·a_9_29
  216. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + b_6_21·a_7_13 + a_6_11·b_7_28
       + b_4_92·a_5_11 + b_4_92·a_5_7 + b_4_92·b_1_12·a_3_2 + a_4_5·b_1_1·b_3_5·b_5_12
       + a_4_5·b_6_21·b_3_3 + a_4_5·b_4_92·b_1_1 + b_2_2·a_8_24·b_1_13
       + b_2_2·b_4_9·b_1_14·a_3_2 + b_2_2·b_4_92·a_3_2 + b_2_2·a_4_5·b_1_14·b_3_5
       + b_2_2·a_4_5·b_1_17 + b_2_2·a_4_5·b_4_9·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_13
       + b_2_22·a_9_32 + b_2_22·a_8_24·b_1_1 + b_2_22·a_4_5·b_5_12
       + b_2_22·a_4_5·b_4_9·b_1_1 + b_2_23·a_4_5·b_1_13 + b_2_24·a_5_7
       + b_2_24·b_1_12·a_3_2 + b_2_24·a_4_5·b_1_1 + c_8_42·b_1_12·b_3_3
       + b_2_2·c_8_42·b_3_3
  217. a_4_5·a_9_32
  218. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + b_6_21·a_7_17 + b_4_9·a_9_32
       + a_4_5·b_1_13·b_3_3·b_3_5 + a_4_5·b_1_16·b_3_3 + a_4_5·b_6_21·b_1_13
       + a_4_5·b_4_9·b_5_12 + a_4_5·b_4_92·b_1_1 + b_2_2·a_8_24·b_1_13 + b_2_2·a_4_5·b_7_28
       + b_2_2·a_4_5·b_1_1·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_14·b_3_5
       + b_2_2·a_4_5·b_1_14·b_3_3 + b_2_2·a_4_5·b_1_17 + b_2_2·a_4_5·b_6_21·b_1_1
       + b_2_2·a_4_5·b_4_9·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_13 + b_2_22·b_6_21·a_3_2
       + b_2_22·b_4_9·a_5_7 + b_2_22·a_4_5·b_1_12·b_3_5 + b_2_22·a_4_5·b_1_12·b_3_3
       + b_2_22·a_4_5·b_4_9·b_1_1 + b_2_23·a_7_17 + b_2_23·b_1_14·a_3_2
       + b_2_24·a_4_5·b_1_1 + b_2_25·a_3_2 + c_8_42·b_1_12·b_3_3 + b_2_2·c_8_42·b_3_3
       + c_8_42·b_1_12·a_3_2 + b_2_2·c_8_42·a_3_2
  219. a_4_7·a_9_32
  220. a_10_34·a_3_2
  221. a_10_34·a_3_4
  222. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + a_10_34·b_3_5 + a_8_22·b_5_12
       + a_8_24·b_5_12 + b_6_21·a_7_13 + a_6_11·b_7_28 + b_4_92·a_5_11 + b_4_92·b_1_12·a_3_2
       + a_4_5·b_1_16·b_3_3 + a_4_5·b_6_21·b_3_5 + a_4_5·b_6_21·b_3_3 + a_4_5·b_6_21·b_1_13
       + a_4_5·b_4_9·b_5_12 + a_4_5·b_4_9·b_1_12·b_3_5 + a_4_5·b_4_9·b_1_15
       + a_4_5·b_4_92·b_1_1 + b_2_2·a_8_24·b_1_13 + b_2_2·b_4_9·a_7_17
       + b_2_2·b_4_9·b_1_14·a_3_2 + b_2_2·a_4_5·b_7_28 + b_2_2·a_4_5·b_1_1·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_14·b_3_5 + b_2_2·a_4_5·b_1_14·b_3_3 + b_2_2·a_4_5·b_1_17
       + b_2_2·a_4_5·b_4_9·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_13 + b_2_22·b_4_9·a_5_7
       + b_2_22·b_4_9·b_1_12·a_3_2 + b_2_22·a_4_5·b_5_12 + b_2_22·a_4_5·b_1_12·b_3_3
       + b_2_22·a_4_5·b_4_9·b_1_1 + b_2_23·a_7_17 + b_2_23·b_1_14·a_3_2
       + b_2_23·a_4_5·b_3_3 + b_2_24·a_5_7 + b_2_24·a_4_5·b_1_1 + b_2_25·a_3_2
       + c_8_42·b_1_12·b_3_3 + b_2_2·c_8_42·b_3_3 + a_4_5·c_8_42·b_1_1
  223. b_1_17·b_3_3·b_3_5 + b_6_21·b_7_28 + b_6_21·b_1_1·b_3_3·b_3_5 + b_6_21·b_1_14·b_3_3
       + b_4_9·b_1_1·b_3_5·b_5_12 + b_4_9·b_1_16·b_3_3 + b_4_9·b_6_21·b_3_3 + b_4_92·b_5_12
       + b_4_92·b_1_12·b_3_3 + b_4_92·b_1_15 + b_4_93·b_1_1 + b_2_2·b_1_1·b_3_5·b_7_28
       + b_2_2·b_6_21·b_5_12 + b_2_2·b_6_21·b_1_12·b_3_3 + b_2_2·b_6_21·b_1_15
       + b_2_2·b_4_9·b_7_28 + b_2_2·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·b_4_9·b_1_17
       + b_2_2·b_4_9·b_6_21·b_1_1 + b_2_2·b_4_92·b_1_13 + b_2_22·b_1_1·b_3_5·b_5_12
       + b_2_22·b_1_16·b_3_5 + b_2_22·b_6_21·b_3_3 + b_2_22·b_4_9·b_5_12
       + b_2_22·b_4_9·b_1_12·b_3_5 + b_2_22·b_4_92·b_1_1 + b_2_23·b_7_28
       + b_2_23·b_1_1·b_3_3·b_3_5 + b_2_23·b_1_14·b_3_5 + b_2_23·b_6_21·b_1_1
       + b_2_23·b_4_9·b_1_13 + b_2_24·b_5_12 + b_2_25·b_3_5 + a_10_34·b_3_3 + a_6_11·b_7_28
       + a_4_5·b_6_21·b_1_13 + a_4_5·b_4_9·b_1_12·b_3_3 + a_4_5·b_4_92·b_1_1
       + b_2_2·a_8_24·b_1_13 + b_2_2·b_4_9·a_7_17 + b_2_2·b_4_9·b_1_14·a_3_2
       + b_2_2·b_4_92·a_3_2 + b_2_2·a_4_5·b_7_28 + b_2_2·a_4_5·b_1_1·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_14·b_3_3 + b_2_2·a_4_5·b_1_17 + b_2_2·a_4_5·b_4_9·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_13 + b_2_22·b_6_21·a_3_2 + b_2_22·b_4_9·a_5_7
       + b_2_22·b_4_9·b_1_12·a_3_2 + b_2_22·a_4_5·b_1_12·b_3_3 + b_2_23·a_4_5·b_3_5
       + b_2_23·a_4_5·b_3_3 + b_2_23·a_4_5·b_1_13 + b_2_24·a_5_14 + b_2_24·a_5_7
       + b_2_25·a_3_2 + c_8_42·b_1_12·b_3_3 + b_2_2·c_8_42·b_3_3 + c_8_42·b_1_12·a_3_2
       + b_2_2·c_8_42·a_3_2
  224. a_7_132
  225. a_7_172
  226. a_7_13·a_7_17
  227. a_6_3·a_8_24
  228. a_6_11·a_8_24
  229. a_7_17·b_7_28 + a_7_13·b_7_28 + b_4_92·b_1_13·a_3_2 + b_4_92·a_6_3
       + a_4_5·b_3_5·b_7_28 + a_4_5·b_6_21·b_1_1·b_3_3 + a_4_5·b_4_9·b_3_3·b_3_5
       + a_4_5·b_4_9·b_1_1·b_5_12 + a_4_5·b_4_9·b_1_13·b_3_3 + a_4_5·b_4_9·b_6_21
       + b_2_2·b_4_9·b_1_1·a_7_13 + b_2_2·b_4_9·a_8_24 + b_2_2·a_4_5·b_1_1·b_7_28
       + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_14 + b_2_2·a_4_5·b_4_92
       + b_2_22·b_4_9·a_6_3 + b_2_22·a_4_5·b_1_13·b_3_5 + b_2_22·a_4_5·b_6_21
       + b_2_22·a_4_5·b_4_9·b_1_12 + b_2_23·b_1_1·a_7_13 + b_2_23·b_1_15·a_3_2
       + b_2_23·b_4_9·b_1_1·a_3_2 + b_2_23·a_4_5·b_1_1·b_3_5 + b_2_23·a_4_5·b_1_1·b_3_3
       + b_2_23·a_4_5·b_1_14 + b_2_23·a_4_5·b_4_9 + b_2_24·b_1_1·a_5_7 + b_2_24·a_6_3
       + b_2_24·a_4_5·b_1_12 + b_2_25·a_4_5 + a_4_5·c_8_42·b_1_12
  230. a_7_17·b_7_28 + b_4_9·a_8_24·b_1_12 + b_4_92·b_1_13·a_3_2 + b_4_92·a_6_3
       + a_4_5·b_1_17·b_3_5 + a_4_5·b_1_17·b_3_3 + a_4_5·b_6_21·b_1_14
       + a_4_5·b_4_9·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_13·b_3_3 + a_4_5·b_4_9·b_6_21
       + a_4_5·b_4_92·b_1_12 + b_2_2·b_4_9·b_1_1·a_7_13 + b_2_2·b_4_9·b_1_15·a_3_2
       + b_2_2·a_4_5·b_3_5·b_5_12 + b_2_2·a_4_5·b_1_1·b_7_28
       + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_15·b_3_5
       + b_2_2·a_4_5·b_6_21·b_1_12 + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_3 + b_2_2·a_4_5·b_4_92 + b_2_22·b_4_9·b_1_13·a_3_2
       + b_2_22·b_4_9·a_6_11 + b_2_22·b_4_9·a_6_3 + b_2_22·a_4_5·b_1_1·b_5_12
       + b_2_22·a_4_5·b_4_9·b_1_12 + b_2_23·b_1_1·a_7_13 + b_2_23·a_8_22
       + b_2_23·b_4_9·b_1_1·a_3_2 + b_2_23·a_4_5·b_1_14 + b_2_23·a_4_5·b_4_9
       + b_2_24·b_1_13·a_3_2 + b_2_24·a_4_5·b_1_12 + b_2_25·a_4_5 + b_2_25·a_4_7
       + a_2_1·b_4_93
  231. a_6_3·a_8_22
  232. a_6_11·a_8_22
  233. a_5_7·a_9_29
  234. b_7_282 + b_6_21·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_3·b_3_5
       + b_4_9·b_1_17·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_3
       + b_4_92·b_3_3·b_3_5 + b_4_92·b_1_1·b_5_12 + b_4_92·b_1_13·b_3_5
       + b_4_92·b_1_13·b_3_3 + b_2_2·b_1_16·b_3_3·b_3_5 + b_2_2·b_6_21·b_3_3·b_3_5
       + b_2_2·b_4_9·b_3_5·b_5_12 + b_2_2·b_4_9·b_1_15·b_3_5 + b_2_2·b_4_9·b_6_21·b_1_12
       + b_2_2·b_4_92·b_1_1·b_3_3 + b_2_2·b_4_93 + b_2_22·b_3_5·b_7_28
       + b_2_22·b_1_17·b_3_5 + b_2_22·b_6_21·b_1_1·b_3_3 + b_2_22·b_4_9·b_3_3·b_3_5
       + b_2_22·b_4_9·b_1_1·b_5_12 + b_2_22·b_4_9·b_1_13·b_3_5 + b_2_22·b_4_9·b_6_21
       + b_2_22·b_4_92·b_1_12 + b_2_23·b_3_5·b_5_12 + b_2_23·b_1_12·b_3_3·b_3_5
       + b_2_23·b_1_15·b_3_5 + b_2_23·b_6_21·b_1_12 + b_2_23·b_4_9·b_1_1·b_3_5
       + b_2_23·b_4_9·b_1_1·b_3_3 + b_2_23·b_4_92 + b_2_24·b_3_3·b_3_5
       + b_2_24·b_1_1·b_5_12 + b_2_24·b_4_9·b_1_12 + b_2_25·b_1_1·b_3_5 + b_2_25·b_4_9
       + b_4_92·a_6_11 + b_4_92·a_6_3 + a_4_5·b_1_14·b_3_3·b_3_5 + a_4_5·b_1_17·b_3_3
       + a_4_5·b_6_21·b_1_1·b_3_5 + a_4_5·b_6_21·b_1_1·b_3_3 + a_4_5·b_6_21·b_1_14
       + a_4_5·b_4_9·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_13·b_3_3 + a_4_5·b_4_9·b_1_16
       + a_4_5·b_4_9·b_6_21 + b_2_2·b_4_9·b_1_15·a_3_2 + b_2_2·b_4_9·a_8_22
       + b_2_2·b_4_92·b_1_1·a_3_2 + b_2_2·a_4_5·b_3_5·b_5_12 + b_2_2·a_4_5·b_1_1·b_7_28
       + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_15·b_3_5 + b_2_2·a_4_5·b_1_18
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_14 + b_2_2·a_4_5·b_4_92
       + b_2_22·b_1_1·a_9_29 + b_2_22·b_4_9·a_6_3 + b_2_22·a_4_5·b_3_3·b_3_5
       + b_2_22·a_4_5·b_1_1·b_5_12 + b_2_22·a_4_5·b_1_16 + b_2_22·a_4_5·b_6_21
       + b_2_22·a_4_5·b_4_9·b_1_12 + b_2_23·a_8_24 + b_2_23·a_4_5·b_1_14
       + b_2_24·b_1_1·a_5_7 + b_2_24·a_6_11 + b_2_24·a_6_3 + b_2_24·a_4_5·b_1_12
       + b_2_25·a_4_5 + c_8_42·b_1_13·b_3_5 + b_4_9·c_8_42·b_1_12
       + b_2_2·c_8_42·b_1_1·b_3_3 + b_2_22·c_8_42·b_1_12 + b_2_23·c_8_42
  235. b_5_12·a_9_29 + b_6_21·a_8_24 + b_4_9·a_8_24·b_1_12 + b_4_92·a_6_11
       + a_4_5·b_3_5·b_7_28 + a_4_5·b_1_14·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1·b_3_5
       + a_4_5·b_6_21·b_1_14 + a_4_5·b_4_9·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_1·b_5_12
       + a_4_5·b_4_9·b_1_13·b_3_3 + a_4_5·b_4_9·b_1_16 + a_4_5·b_4_9·b_6_21
       + b_2_2·b_4_9·b_1_1·a_7_13 + b_2_2·b_4_9·b_1_15·a_3_2
       + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_15·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_1·b_3_3
       + b_2_2·a_4_5·b_4_9·b_1_14 + b_2_22·a_4_5·b_1_1·b_5_12 + b_2_23·b_4_9·b_1_1·a_3_2
       + c_8_42·b_1_1·a_5_7 + a_4_5·c_8_42·b_1_12 + b_2_2·a_4_7·c_8_42
  236. a_5_11·a_9_29
  237. a_5_14·a_9_29
  238. a_5_7·a_9_32
  239. b_7_282 + b_6_21·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_3·b_3_5
       + b_4_9·b_1_17·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_3
       + b_4_92·b_3_3·b_3_5 + b_4_92·b_1_1·b_5_12 + b_4_92·b_1_13·b_3_5
       + b_4_92·b_1_13·b_3_3 + b_2_2·b_1_16·b_3_3·b_3_5 + b_2_2·b_6_21·b_3_3·b_3_5
       + b_2_2·b_4_9·b_3_5·b_5_12 + b_2_2·b_4_9·b_1_15·b_3_5 + b_2_2·b_4_9·b_6_21·b_1_12
       + b_2_2·b_4_92·b_1_1·b_3_3 + b_2_2·b_4_93 + b_2_22·b_3_5·b_7_28
       + b_2_22·b_1_17·b_3_5 + b_2_22·b_6_21·b_1_1·b_3_3 + b_2_22·b_4_9·b_3_3·b_3_5
       + b_2_22·b_4_9·b_1_1·b_5_12 + b_2_22·b_4_9·b_1_13·b_3_5 + b_2_22·b_4_9·b_6_21
       + b_2_22·b_4_92·b_1_12 + b_2_23·b_3_5·b_5_12 + b_2_23·b_1_12·b_3_3·b_3_5
       + b_2_23·b_1_15·b_3_5 + b_2_23·b_6_21·b_1_12 + b_2_23·b_4_9·b_1_1·b_3_5
       + b_2_23·b_4_9·b_1_1·b_3_3 + b_2_23·b_4_92 + b_2_24·b_3_3·b_3_5
       + b_2_24·b_1_1·b_5_12 + b_2_24·b_4_9·b_1_12 + b_2_25·b_1_1·b_3_5 + b_2_25·b_4_9
       + b_5_12·a_9_32 + b_6_21·a_8_24 + b_4_9·a_8_24·b_1_12 + b_4_92·a_6_11 + b_4_92·a_6_3
       + a_4_5·b_3_5·b_7_28 + a_4_5·b_1_14·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_1·b_3_5
       + a_4_5·b_6_21·b_1_1·b_3_3 + a_4_5·b_6_21·b_1_14 + a_4_5·b_4_9·b_1_13·b_3_5
       + a_4_5·b_4_9·b_1_13·b_3_3 + a_4_5·b_4_92·b_1_12 + b_2_2·b_4_9·a_8_22
       + b_2_2·b_4_92·b_1_1·a_3_2 + b_2_2·a_4_5·b_3_5·b_5_12
       + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_2·a_4_5·b_1_18
       + b_2_2·a_4_5·b_6_21·b_1_12 + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_3 + b_2_22·b_4_9·b_1_13·a_3_2 + b_2_22·b_4_9·a_6_11
       + b_2_22·a_4_5·b_1_13·b_3_5 + b_2_22·a_4_5·b_1_13·b_3_3 + b_2_22·a_4_5·b_6_21
       + b_2_23·a_8_24 + b_2_23·a_4_5·b_1_1·b_3_5 + b_2_23·a_4_5·b_1_1·b_3_3
       + b_2_23·a_4_5·b_1_14 + b_2_23·a_4_5·b_4_9 + b_2_24·a_6_3 + b_2_24·a_4_5·b_1_12
       + b_2_25·a_4_5 + b_2_25·a_4_7 + a_2_1·b_4_93 + c_8_42·b_1_13·b_3_5
       + b_4_9·c_8_42·b_1_12 + b_2_2·c_8_42·b_1_1·b_3_3 + b_2_22·c_8_42·b_1_12
       + b_2_23·c_8_42
  240. a_5_11·a_9_32
  241. a_5_14·a_9_32
  242. b_7_282 + b_6_21·b_1_12·b_3_3·b_3_5 + b_4_9·b_1_14·b_3_3·b_3_5
       + b_4_9·b_1_17·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_5 + b_4_9·b_6_21·b_1_1·b_3_3
       + b_4_92·b_3_3·b_3_5 + b_4_92·b_1_1·b_5_12 + b_4_92·b_1_13·b_3_5
       + b_4_92·b_1_13·b_3_3 + b_2_2·b_1_16·b_3_3·b_3_5 + b_2_2·b_6_21·b_3_3·b_3_5
       + b_2_2·b_4_9·b_3_5·b_5_12 + b_2_2·b_4_9·b_1_15·b_3_5 + b_2_2·b_4_9·b_6_21·b_1_12
       + b_2_2·b_4_92·b_1_1·b_3_3 + b_2_2·b_4_93 + b_2_22·b_3_5·b_7_28
       + b_2_22·b_1_17·b_3_5 + b_2_22·b_6_21·b_1_1·b_3_3 + b_2_22·b_4_9·b_3_3·b_3_5
       + b_2_22·b_4_9·b_1_1·b_5_12 + b_2_22·b_4_9·b_1_13·b_3_5 + b_2_22·b_4_9·b_6_21
       + b_2_22·b_4_92·b_1_12 + b_2_23·b_3_5·b_5_12 + b_2_23·b_1_12·b_3_3·b_3_5
       + b_2_23·b_1_15·b_3_5 + b_2_23·b_6_21·b_1_12 + b_2_23·b_4_9·b_1_1·b_3_5
       + b_2_23·b_4_9·b_1_1·b_3_3 + b_2_23·b_4_92 + b_2_24·b_3_3·b_3_5
       + b_2_24·b_1_1·b_5_12 + b_2_24·b_4_9·b_1_12 + b_2_25·b_1_1·b_3_5 + b_2_25·b_4_9
       + a_7_17·b_7_28 + b_6_21·a_8_24 + b_4_9·a_8_24·b_1_12 + b_4_92·b_1_13·a_3_2
       + a_4_5·b_1_14·b_3_3·b_3_5 + a_4_5·b_1_17·b_3_5 + a_4_5·b_1_17·b_3_3
       + a_4_5·b_6_21·b_1_14 + a_4_5·b_4_9·b_1_1·b_5_12 + a_4_5·b_4_9·b_1_13·b_3_5
       + a_4_5·b_4_9·b_1_16 + a_4_5·b_4_9·b_6_21 + b_2_2·b_4_9·b_1_1·a_7_13
       + b_2_2·b_4_9·b_1_15·a_3_2 + b_2_2·a_4_5·b_1_12·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_15·b_3_3 + b_2_2·a_4_5·b_1_18 + b_2_2·a_4_5·b_6_21·b_1_12
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_14 + b_2_2·a_4_5·b_4_92
       + b_2_22·a_10_34 + b_2_22·b_4_9·b_1_13·a_3_2 + b_2_22·b_4_9·a_6_11
       + b_2_22·a_4_5·b_1_1·b_5_12 + b_2_22·a_4_5·b_1_13·b_3_3 + b_2_22·a_4_5·b_1_16
       + b_2_22·a_4_5·b_6_21 + b_2_23·b_4_9·b_1_1·a_3_2 + b_2_23·a_4_5·b_4_9
       + b_2_24·b_1_13·a_3_2 + b_2_25·b_1_1·a_3_2 + a_2_1·b_4_93 + c_8_42·b_1_13·b_3_5
       + b_4_9·c_8_42·b_1_12 + b_2_2·c_8_42·b_1_1·b_3_3 + b_2_22·c_8_42·b_1_12
       + b_2_23·c_8_42 + c_8_42·b_1_13·a_3_2 + b_2_2·a_4_7·c_8_42
  243. a_4_5·a_10_34
  244. a_7_17·b_7_28 + a_7_13·b_7_28 + b_6_21·a_8_22 + b_4_9·a_10_34 + b_4_9·a_8_24·b_1_12
       + b_4_92·b_1_13·a_3_2 + a_4_5·b_3_5·b_7_28 + a_4_5·b_1_14·b_3_3·b_3_5
       + a_4_5·b_1_17·b_3_5 + a_4_5·b_1_17·b_3_3 + a_4_5·b_4_9·b_1_13·b_3_3
       + a_4_5·b_4_9·b_1_16 + b_2_2·b_4_9·b_1_1·a_7_13 + b_2_2·b_4_9·a_8_22
       + b_2_2·b_4_92·b_1_1·a_3_2 + b_2_2·a_4_5·b_3_5·b_5_12 + b_2_2·a_4_5·b_1_15·b_3_5
       + b_2_2·a_4_5·b_1_15·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_1·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_3 + b_2_22·b_4_9·b_1_13·a_3_2
       + b_2_22·a_4_5·b_1_13·b_3_5 + b_2_23·b_1_15·a_3_2 + b_2_23·b_4_9·b_1_1·a_3_2
       + b_2_24·b_1_1·a_5_7 + b_2_24·b_1_13·a_3_2 + b_2_24·a_6_11 + a_2_1·b_4_93
       + c_8_42·b_1_13·a_3_2 + b_2_2·c_8_42·b_1_1·a_3_2 + b_2_2·a_4_5·c_8_42
       + a_2_1·b_4_9·c_8_42
  245. a_4_7·a_10_34
  246. a_8_24·a_7_17
  247. a_8_24·a_7_13
  248. a_8_22·a_7_17
  249. a_8_22·a_7_13
  250. a_8_22·b_7_28 + b_6_21·a_9_29 + a_4_5·b_6_21·b_1_15 + a_4_5·b_4_9·b_6_21·b_1_1
       + a_4_5·b_4_92·b_3_3 + a_4_5·b_4_92·b_1_13 + b_2_2·b_4_92·a_5_7
       + b_2_2·b_4_92·b_1_12·a_3_2 + b_2_2·a_4_5·b_1_13·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_16·b_3_5 + b_2_2·a_4_5·b_1_16·b_3_3 + b_2_2·a_4_5·b_6_21·b_1_13
       + b_2_2·a_4_5·b_4_9·b_1_15 + b_2_2·a_4_5·b_4_92·b_1_1 + b_2_22·a_8_22·b_3_5
       + b_2_22·b_4_9·a_7_17 + b_2_22·a_4_5·b_7_28 + b_2_22·a_4_5·b_1_1·b_3_3·b_3_5
       + b_2_22·a_4_5·b_1_14·b_3_5 + b_2_22·a_4_5·b_4_9·b_1_13 + b_2_23·a_4_5·b_5_12
       + b_2_23·a_4_5·b_1_12·b_3_5 + b_2_24·a_7_13 + b_2_24·b_4_9·a_3_2
       + b_2_24·a_4_5·b_1_13 + b_2_25·a_5_14 + b_2_25·a_5_7 + b_2_25·a_4_5·b_1_1
       + b_4_9·c_8_42·a_3_2 + b_2_2·c_8_42·a_5_14 + b_2_2·c_8_42·a_5_7 + b_2_22·c_8_42·a_3_2
  251. a_6_3·a_9_29
  252. a_6_11·a_9_29
  253. a_8_24·b_7_28 + b_4_92·a_7_13 + b_4_93·a_3_4 + a_4_5·b_6_21·b_1_12·b_3_3
       + a_4_5·b_6_21·b_1_15 + a_4_5·b_4_9·b_1_14·b_3_5 + a_4_5·b_4_9·b_6_21·b_1_1
       + a_4_5·b_4_92·b_3_5 + a_4_5·b_4_92·b_3_3 + a_4_5·b_4_92·b_1_13
       + b_2_2·b_4_9·a_8_24·b_1_1 + b_2_2·a_4_5·b_6_21·b_3_5 + b_2_2·a_4_5·b_6_21·b_1_13
       + b_2_2·a_4_5·b_4_9·b_1_12·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_12·b_3_3
       + b_2_22·b_4_9·a_7_17 + b_2_22·b_4_9·b_1_14·a_3_2 + b_2_22·a_4_5·b_1_14·b_3_3
       + b_2_22·a_4_5·b_6_21·b_1_1 + b_2_22·a_4_5·b_4_9·b_3_5 + b_2_23·a_9_32
       + b_2_23·a_9_29 + b_2_23·a_8_24·b_1_1 + b_2_23·b_6_21·a_3_2 + b_2_23·b_4_9·a_5_7
       + b_2_23·a_4_5·b_1_12·b_3_5 + b_2_23·a_4_5·b_1_15 + b_2_23·a_4_5·b_4_9·b_1_1
       + b_2_24·a_7_17 + b_2_24·a_7_13 + b_2_24·a_4_5·b_3_3 + b_2_25·a_5_14 + b_2_25·a_5_7
       + b_2_25·b_1_12·a_3_2 + b_2_25·a_4_5·b_1_1 + b_2_26·a_3_2 + c_8_42·b_1_14·a_3_2
       + a_4_5·c_8_42·b_1_13 + b_2_2·a_4_5·c_8_42·b_1_1
  254. a_8_22·b_7_28 + a_8_24·b_7_28 + b_6_21·a_9_32 + b_4_9·a_8_22·b_3_5 + b_4_92·a_7_17
       + b_4_92·a_7_13 + b_4_92·b_1_14·a_3_2 + b_4_93·a_3_4 + b_4_93·a_3_2
       + a_4_5·b_1_15·b_3_3·b_3_5 + a_4_5·b_1_18·b_3_3 + a_4_5·b_6_21·b_5_12
       + a_4_5·b_6_21·b_1_12·b_3_5 + a_4_5·b_6_21·b_1_12·b_3_3 + a_4_5·b_4_9·b_7_28
       + a_4_5·b_4_9·b_1_1·b_3_3·b_3_5 + a_4_5·b_4_9·b_6_21·b_1_1 + a_4_5·b_4_92·b_1_13
       + b_2_2·b_4_9·a_9_29 + b_2_2·b_4_92·b_1_12·a_3_2 + b_2_2·a_4_5·b_1_16·b_3_5
       + b_2_2·a_4_5·b_6_21·b_1_13 + b_2_2·a_4_5·b_4_9·b_5_12
       + b_2_2·a_4_5·b_4_9·b_1_12·b_3_5 + b_2_2·a_4_5·b_4_9·b_1_12·b_3_3
       + b_2_2·a_4_5·b_4_92·b_1_1 + b_2_22·a_8_22·b_3_5 + b_2_22·b_4_9·a_7_17
       + b_2_22·b_4_9·a_7_13 + b_2_22·a_4_5·b_7_28 + b_2_22·a_4_5·b_1_1·b_3_3·b_3_5
       + b_2_22·a_4_5·b_4_9·b_3_5 + b_2_22·a_4_5·b_4_9·b_3_3 + b_2_23·a_8_24·b_1_1
       + b_2_23·b_6_21·a_3_2 + b_2_23·a_4_5·b_4_9·b_1_1 + b_2_24·a_7_13
       + b_2_24·b_1_14·a_3_2 + b_2_24·a_4_5·b_3_3 + b_2_25·a_5_7 + b_2_25·a_4_5·b_1_1
       + a_4_5·c_8_42·b_3_3 + a_4_5·c_8_42·b_1_13 + b_2_2·c_8_42·a_5_14
       + b_2_2·a_4_5·c_8_42·b_1_1 + b_2_22·c_8_42·a_3_2
  255. a_6_3·a_9_32
  256. a_6_11·a_9_32
  257. a_8_22·b_7_28 + b_4_9·a_8_22·b_3_5 + a_4_5·b_1_1·b_3_5·b_7_28
       + a_4_5·b_1_15·b_3_3·b_3_5 + a_4_5·b_6_21·b_5_12 + a_4_5·b_6_21·b_1_12·b_3_3
       + a_4_5·b_6_21·b_1_15 + a_4_5·b_4_9·b_7_28 + a_4_5·b_4_9·b_1_1·b_3_3·b_3_5
       + a_4_5·b_4_9·b_1_17 + a_4_5·b_4_9·b_6_21·b_1_1 + a_4_5·b_4_92·b_3_3
       + a_4_5·b_4_92·b_1_13 + b_2_2·b_4_9·a_9_32 + b_2_2·b_4_92·a_5_7
       + b_2_2·b_4_92·b_1_12·a_3_2 + b_2_2·a_4_5·b_1_13·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_16·b_3_3 + b_2_2·a_4_5·b_6_21·b_3_3 + b_2_2·a_4_5·b_6_21·b_1_13
       + b_2_2·a_4_5·b_4_9·b_5_12 + b_2_2·a_4_5·b_4_9·b_1_12·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_12·b_3_3 + b_2_2·a_4_5·b_4_92·b_1_1 + b_2_22·b_4_9·a_7_17
       + b_2_22·b_4_9·a_7_13 + b_2_22·b_4_9·b_1_14·a_3_2 + b_2_22·b_4_92·a_3_2
       + b_2_22·a_4_5·b_1_1·b_3_3·b_3_5 + b_2_22·a_4_5·b_6_21·b_1_1 + b_2_23·b_6_21·a_3_2
       + b_2_23·b_4_9·b_1_12·a_3_2 + b_2_23·a_4_5·b_1_12·b_3_5
       + b_2_23·a_4_5·b_1_12·b_3_3 + b_2_24·a_7_13 + b_2_24·b_4_9·a_3_2
       + b_2_24·a_4_5·b_1_13 + b_2_25·a_5_14 + b_2_25·a_5_7 + b_2_25·a_4_5·b_1_1
       + b_2_26·a_3_2 + a_4_5·c_8_42·b_3_3
  258. a_10_34·a_5_7
  259. a_10_34·b_5_12 + a_8_24·b_7_28 + b_4_9·a_8_22·b_3_5 + b_4_92·a_7_13
       + b_4_92·b_1_14·a_3_2 + b_4_93·a_3_4 + a_4_5·b_6_21·b_5_12
       + a_4_5·b_6_21·b_1_12·b_3_5 + a_4_5·b_6_21·b_1_15 + a_4_5·b_4_9·b_7_28
       + a_4_5·b_4_9·b_1_1·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_14·b_3_3 + a_4_5·b_4_9·b_1_17
       + a_4_5·b_4_92·b_3_5 + a_4_5·b_4_92·b_1_13 + b_2_2·b_4_9·a_9_29
       + b_2_2·b_4_9·a_8_24·b_1_1 + b_2_2·b_4_92·a_5_7 + b_2_2·b_4_92·b_1_12·a_3_2
       + b_2_2·a_4_5·b_1_16·b_3_5 + b_2_2·a_4_5·b_6_21·b_1_13 + b_2_2·a_4_5·b_4_9·b_5_12
       + b_2_2·a_4_5·b_4_92·b_1_1 + b_2_22·a_8_22·b_3_5 + b_2_22·b_4_9·a_7_13
       + b_2_22·b_4_9·b_1_14·a_3_2 + b_2_22·b_4_92·a_3_2
       + b_2_22·a_4_5·b_1_1·b_3_3·b_3_5 + b_2_22·a_4_5·b_4_9·b_3_3 + b_2_23·b_4_9·a_5_7
       + b_2_23·a_4_5·b_1_12·b_3_5 + b_2_24·a_4_5·b_3_5 + b_2_25·a_5_14 + b_2_25·a_5_7
       + c_8_42·b_1_14·a_3_2 + b_4_9·c_8_42·a_3_2 + b_2_2·c_8_42·a_5_14 + b_2_2·c_8_42·a_5_7
       + b_2_2·a_4_5·c_8_42·b_1_1 + b_2_22·c_8_42·a_3_2
  260. a_10_34·a_5_11
  261. a_10_34·a_5_14
  262. a_8_242
  263. a_8_222
  264. a_8_24·a_8_22
  265. a_7_17·a_9_29
  266. a_7_13·a_9_29
  267. a_7_17·a_9_32
  268. a_7_13·a_9_32
  269. b_7_28·a_9_32 + b_4_92·a_8_24 + a_4_5·b_1_16·b_3_3·b_3_5 + a_4_5·b_6_212
       + a_4_5·b_4_9·b_3_5·b_5_12 + a_4_5·b_4_9·b_1_18 + a_4_5·b_4_9·b_6_21·b_1_12
       + a_4_5·b_4_92·b_1_1·b_3_3 + a_4_5·b_4_92·b_1_14 + b_2_2·b_4_9·a_8_24·b_1_12
       + b_2_2·b_4_92·a_6_11 + b_2_2·a_4_5·b_3_5·b_7_28 + b_2_2·a_4_5·b_6_21·b_1_1·b_3_5
       + b_2_2·a_4_5·b_6_21·b_1_1·b_3_3 + b_2_2·a_4_5·b_6_21·b_1_14
       + b_2_2·a_4_5·b_4_9·b_1_1·b_5_12 + b_2_2·a_4_5·b_4_9·b_1_13·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_13·b_3_3 + b_2_2·a_4_5·b_4_9·b_1_16
       + b_2_22·b_4_9·b_1_15·a_3_2 + b_2_22·b_4_9·a_8_22 + b_2_22·b_4_92·b_1_1·a_3_2
       + b_2_22·a_4_5·b_1_1·b_7_28 + b_2_22·a_4_5·b_1_15·b_3_3
       + b_2_22·a_4_5·b_6_21·b_1_12 + b_2_22·a_4_5·b_4_9·b_1_1·b_3_3
       + b_2_22·a_4_5·b_4_9·b_1_14 + b_2_22·a_4_5·b_4_92 + b_2_23·b_1_1·a_9_29
       + b_2_23·a_10_34 + b_2_23·b_4_9·a_6_11 + b_2_23·a_4_5·b_3_3·b_3_5
       + b_2_23·a_4_5·b_1_1·b_5_12 + b_2_23·a_4_5·b_1_13·b_3_3 + b_2_23·a_4_5·b_6_21
       + b_2_23·a_4_5·b_4_9·b_1_12 + b_2_24·a_8_24 + b_2_24·a_4_5·b_1_1·b_3_5
       + b_2_24·a_4_5·b_1_14 + b_2_25·b_1_13·a_3_2 + b_2_25·a_6_11 + b_2_25·a_6_3
       + b_2_25·a_4_5·b_1_12 + b_2_26·b_1_1·a_3_2 + b_2_26·a_4_5 + b_2_26·a_4_7
       + a_2_1·b_4_92·b_6_21 + c_8_42·b_1_15·a_3_2 + a_4_5·c_8_42·b_1_14
       + b_2_2·c_8_42·b_1_13·a_3_2
  270. b_6_21·a_10_34 + b_4_92·b_1_15·a_3_2 + b_4_92·a_8_22 + b_4_92·a_8_24
       + b_4_93·b_1_1·a_3_2 + a_4_5·b_6_21·b_1_16 + a_4_5·b_4_9·b_3_5·b_5_12
       + a_4_5·b_4_9·b_1_15·b_3_3 + a_4_5·b_4_92·b_1_1·b_3_5 + a_4_5·b_4_92·b_1_14
       + a_4_5·b_4_93 + b_2_2·b_4_92·b_1_13·a_3_2 + b_2_2·b_4_92·a_6_11
       + b_2_2·b_4_92·a_6_3 + b_2_2·a_4_5·b_3_5·b_7_28 + b_2_2·a_4_5·b_1_14·b_3_3·b_3_5
       + b_2_2·a_4_5·b_1_17·b_3_5 + b_2_2·a_4_5·b_6_21·b_1_1·b_3_5
       + b_2_2·a_4_5·b_6_21·b_1_14 + b_2_22·b_4_9·b_1_1·a_7_13
       + b_2_22·a_4_5·b_1_15·b_3_5 + b_2_22·a_4_5·b_1_15·b_3_3
       + b_2_22·a_4_5·b_4_9·b_1_1·b_3_3 + b_2_22·a_4_5·b_4_92 + b_2_23·b_4_9·a_6_11
       + b_2_23·b_4_9·a_6_3 + b_2_23·a_4_5·b_1_1·b_5_12 + b_2_23·a_4_5·b_1_13·b_3_3
       + b_2_24·b_1_15·a_3_2 + b_2_24·a_8_24 + b_2_24·b_4_9·b_1_1·a_3_2
       + b_2_24·a_4_5·b_4_9 + b_2_25·b_1_1·a_5_7 + b_2_25·b_1_13·a_3_2 + b_2_25·a_6_3
       + b_2_25·a_4_5·b_1_12 + b_2_26·b_1_1·a_3_2 + b_2_26·a_4_5 + b_2_26·a_4_7
       + a_2_1·b_4_92·b_6_21 + b_4_9·c_8_42·b_1_1·a_3_2 + b_2_2·c_8_42·b_1_1·a_5_7
       + b_2_2·a_6_11·c_8_42 + b_2_2·a_6_3·c_8_42 + b_2_2·a_4_5·c_8_42·b_1_12
       + b_2_22·c_8_42·b_1_1·a_3_2 + b_2_22·a_4_7·c_8_42 + a_2_1·b_6_21·c_8_42
  271. a_6_3·a_10_34
  272. a_6_11·a_10_34
  273. b_7_28·a_9_32 + b_7_28·a_9_29 + b_4_92·b_1_1·a_7_13 + b_4_92·a_8_24
       + a_4_5·b_6_21·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_13·b_3_5 + a_4_5·b_6_21·b_1_16
       + a_4_5·b_4_9·b_1_1·b_7_28 + a_4_5·b_4_9·b_1_15·b_3_3 + a_4_5·b_4_92·b_1_1·b_3_3
       + a_4_5·b_4_92·b_1_14 + a_4_5·b_4_93 + b_2_2·b_4_9·a_10_34
       + b_2_2·b_4_9·a_8_24·b_1_12 + b_2_2·b_4_92·a_6_11 + b_2_2·b_4_92·a_6_3
       + b_2_2·a_4_5·b_1_14·b_3_3·b_3_5 + b_2_2·a_4_5·b_6_21·b_1_1·b_3_5
       + b_2_2·a_4_5·b_4_9·b_1_1·b_5_12 + b_2_2·a_4_5·b_4_9·b_1_13·b_3_5
       + b_2_2·a_4_5·b_4_9·b_6_21 + b_2_2·a_4_5·b_4_92·b_1_12
       + b_2_22·b_4_9·b_1_1·a_7_13 + b_2_22·b_4_9·a_8_22 + b_2_22·b_4_9·a_8_24
       + b_2_22·a_4_5·b_3_5·b_5_12 + b_2_22·a_4_5·b_1_1·b_7_28
       + b_2_22·a_4_5·b_1_12·b_3_3·b_3_5 + b_2_22·a_4_5·b_1_15·b_3_3
       + b_2_22·a_4_5·b_6_21·b_1_12 + b_2_23·b_4_9·b_1_13·a_3_2 + b_2_23·b_4_9·a_6_3
       + b_2_23·a_4_5·b_3_3·b_3_5 + b_2_23·a_4_5·b_1_13·b_3_3 + b_2_23·a_4_5·b_6_21
       + b_2_23·a_4_5·b_4_9·b_1_12 + b_2_24·b_1_1·a_7_13 + b_2_24·b_1_15·a_3_2
       + b_2_24·a_8_22 + b_2_24·a_4_5·b_1_1·b_3_5 + b_2_24·a_4_5·b_1_14 + b_2_25·a_6_11
       + b_2_25·a_6_3 + b_2_25·a_4_5·b_1_12 + b_2_26·b_1_1·a_3_2 + a_2_1·b_4_92·b_6_21
       + c_8_42·b_1_15·a_3_2 + a_4_5·c_8_42·b_1_1·b_3_5 + a_4_5·c_8_42·b_1_1·b_3_3
       + b_2_2·a_4_5·c_8_42·b_1_12
  274. a_8_22·a_9_29
  275. a_8_24·a_9_29
  276. a_8_22·a_9_32
  277. a_8_24·a_9_32
  278. a_10_34·b_7_28 + b_4_92·a_9_29 + b_4_93·b_1_12·a_3_2 + a_4_5·b_6_21·b_7_28
       + a_4_5·b_6_21·b_1_1·b_3_3·b_3_5 + a_4_5·b_6_21·b_1_14·b_3_3 + a_4_5·b_6_21·b_1_17
       + a_4_5·b_6_212·b_1_1 + a_4_5·b_4_9·b_1_13·b_3_3·b_3_5 + a_4_5·b_4_9·b_1_16·b_3_5
       + a_4_5·b_4_9·b_1_16·b_3_3 + a_4_5·b_4_9·b_1_19 + a_4_5·b_4_92·b_5_12
       + a_4_5·b_4_92·b_1_12·b_3_5 + a_4_5·b_4_92·b_1_15 + a_4_5·b_4_93·b_1_1
       + b_2_2·b_4_92·a_7_17 + b_2_2·a_4_5·b_4_9·b_7_28
       + b_2_2·a_4_5·b_4_9·b_1_1·b_3_3·b_3_5 + b_2_2·a_4_5·b_4_92·b_3_3
       + b_2_22·b_4_92·a_5_7 + b_2_22·a_4_5·b_1_16·b_3_5 + b_2_22·a_4_5·b_6_21·b_3_5
       + b_2_22·a_4_5·b_4_9·b_5_12 + b_2_22·a_4_5·b_4_9·b_1_12·b_3_5
       + b_2_23·b_4_9·b_1_14·a_3_2 + b_2_23·a_4_5·b_1_1·b_3_3·b_3_5
       + b_2_23·a_4_5·b_1_14·b_3_5 + b_2_23·a_4_5·b_1_14·b_3_3
       + b_2_23·a_4_5·b_4_9·b_3_3 + b_2_23·a_4_5·b_4_9·b_1_13 + b_2_24·a_9_32
       + b_2_24·a_9_29 + b_2_24·a_8_24·b_1_1 + b_2_24·b_6_21·a_3_2 + b_2_24·a_4_5·b_5_12
       + b_2_24·a_4_5·b_1_12·b_3_3 + b_2_24·a_4_5·b_1_15 + b_2_25·a_7_13
       + b_2_25·b_1_14·a_3_2 + b_2_25·b_4_9·a_3_2 + b_2_26·b_1_12·a_3_2
       + b_4_9·c_8_42·b_1_12·a_3_2 + a_4_5·c_8_42·b_1_12·b_3_3 + a_4_5·c_8_42·b_1_15
       + a_4_5·b_4_9·c_8_42·b_1_1 + b_2_2·a_4_5·c_8_42·b_3_5 + b_2_2·a_4_5·c_8_42·b_1_13
  279. a_10_34·a_7_17
  280. a_10_34·a_7_13
  281. a_9_292
  282. a_9_322
  283. a_9_29·a_9_32
  284. a_8_22·a_10_34
  285. a_8_24·a_10_34
  286. a_10_34·a_9_32
  287. a_10_34·a_9_29
  288. a_10_342


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 20.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_42, a Duflot regular element of degree 8
    2. b_1_1·b_3_5 + b_1_14 + b_4_9 + b_2_22, an element of degree 4
    3. b_1_13·b_3_5 + b_4_9·b_1_12 + b_2_2·b_1_1·b_3_5 + b_2_2·b_4_9 + b_2_22·b_1_12, an element of degree 6
    4. b_1_12, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, 4, 8, 14, 16].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_20, an element of degree 2
  5. a_3_20, an element of degree 3
  6. a_3_40, an element of degree 3
  7. b_3_30, an element of degree 3
  8. b_3_50, an element of degree 3
  9. a_4_70, an element of degree 4
  10. a_4_50, an element of degree 4
  11. b_4_90, an element of degree 4
  12. a_5_70, an element of degree 5
  13. a_5_110, an element of degree 5
  14. a_5_140, an element of degree 5
  15. b_5_120, an element of degree 5
  16. a_6_30, an element of degree 6
  17. a_6_110, an element of degree 6
  18. b_6_210, an element of degree 6
  19. a_7_130, an element of degree 7
  20. a_7_170, an element of degree 7
  21. b_7_280, an element of degree 7
  22. a_8_240, an element of degree 8
  23. a_8_220, an element of degree 8
  24. c_8_42c_1_08, an element of degree 8
  25. a_9_290, an element of degree 9
  26. a_9_320, an element of degree 9
  27. a_10_340, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_1, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_2c_1_22 + c_1_1·c_1_2, an element of degree 2
  5. a_3_20, an element of degree 3
  6. a_3_40, an element of degree 3
  7. b_3_3c_1_23 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_12·c_1_2, an element of degree 3
  8. b_3_5c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_2·c_1_3 + c_1_02·c_1_1, an element of degree 3
  9. a_4_70, an element of degree 4
  10. a_4_50, an element of degree 4
  11. b_4_9c_1_34 + c_1_22·c_1_32 + c_1_12·c_1_32 + c_1_02·c_1_12, an element of degree 4
  12. a_5_70, an element of degree 5
  13. a_5_110, an element of degree 5
  14. a_5_140, an element of degree 5
  15. b_5_12c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3
       + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_1, an element of degree 5
  16. a_6_30, an element of degree 6
  17. a_6_110, an element of degree 6
  18. b_6_21c_1_36 + c_1_22·c_1_34 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34
       + c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_13·c_1_33
       + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_02·c_1_24
       + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_13·c_1_3
       + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
  19. a_7_130, an element of degree 7
  20. a_7_170, an element of degree 7
  21. b_7_28c_1_2·c_1_36 + c_1_23·c_1_34 + c_1_1·c_1_36 + c_1_1·c_1_2·c_1_35
       + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_23·c_1_33 + c_1_1·c_1_24·c_1_32
       + c_1_1·c_1_25·c_1_3 + c_1_12·c_1_35 + c_1_12·c_1_23·c_1_32 + c_1_13·c_1_34
       + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_22·c_1_32 + c_1_13·c_1_23·c_1_3
       + c_1_14·c_1_33 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_2·c_1_3 + c_1_02·c_1_25
       + c_1_02·c_1_1·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_12·c_1_2·c_1_32 + c_1_02·c_1_12·c_1_22·c_1_3
       + c_1_02·c_1_12·c_1_23 + c_1_02·c_1_13·c_1_2·c_1_3 + c_1_02·c_1_13·c_1_22
       + c_1_02·c_1_15 + c_1_04·c_1_23 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22
       + c_1_04·c_1_12·c_1_3, an element of degree 7
  22. a_8_240, an element of degree 8
  23. a_8_220, an element of degree 8
  24. c_8_42c_1_38 + c_1_27·c_1_3 + c_1_1·c_1_22·c_1_35 + c_1_12·c_1_22·c_1_34
       + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_13·c_1_2·c_1_34
       + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34
       + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_22·c_1_3
       + c_1_16·c_1_2·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32
       + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_22·c_1_3
       + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_15·c_1_2
       + c_1_02·c_1_16 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24
       + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_06·c_1_12
       + c_1_08, an element of degree 8
  25. a_9_290, an element of degree 9
  26. a_9_320, an element of degree 9
  27. a_10_340, an element of degree 10


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009