Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 53 of order 128
General information on the group
- The group has 2 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t2 − t + 1) |
| (t − 1)3 · (t2 + 1) |
- The a-invariants are -∞,-3,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 21 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_3_3, an element of degree 3
- b_3_4, an element of degree 3
- a_4_2, a nilpotent element of degree 4
- b_4_6, an element of degree 4
- b_4_7, an element of degree 4
- a_5_6, a nilpotent element of degree 5
- b_5_9, an element of degree 5
- b_5_10, an element of degree 5
- a_6_6, a nilpotent element of degree 6
- b_6_13, an element of degree 6
- a_7_8, a nilpotent element of degree 7
- b_7_16, an element of degree 7
- b_7_17, an element of degree 7
- a_8_8, a nilpotent element of degree 8
- c_8_22, a Duflot regular element of degree 8
- b_9_27, an element of degree 9
Ring relations
There are 169 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1
- b_2_2·a_1_0
- a_2_12
- b_2_2·b_1_12
- a_1_0·a_3_2
- a_1_0·b_3_3
- a_1_0·b_3_4
- b_1_1·b_3_4 + a_2_1·b_2_2
- a_2_1·a_3_2
- b_2_22·b_1_1 + a_2_1·b_3_3
- b_2_2·b_3_4 + b_2_2·b_3_3 + b_2_2·a_3_2
- b_2_2·a_3_2 + a_2_1·b_3_4
- a_4_2·a_1_0
- b_2_22·b_1_1 + a_4_2·b_1_1 + b_2_2·a_3_2
- b_2_22·b_1_1 + b_4_6·a_1_0 + b_2_2·a_3_2
- b_4_7·a_1_0
- a_3_22
- a_3_2·b_3_4 + a_2_1·b_2_22
- b_3_42 + b_2_23 + a_2_1·b_2_22
- b_3_3·b_3_4 + b_2_23
- a_2_1·a_4_2
- b_2_2·a_4_2 + a_2_1·b_4_6 + a_2_1·b_2_22
- b_1_13·b_3_3 + b_4_6·b_1_12 + a_3_2·b_3_3 + b_1_13·a_3_2 + a_2_1·b_2_22
- b_3_32 + b_4_7·b_1_12 + b_2_23 + a_2_1·b_2_22
- a_1_0·a_5_6
- b_1_1·a_5_6
- a_1_0·b_5_9
- a_1_0·b_5_10
- b_1_1·b_5_10 + b_1_1·b_5_9 + b_2_2·a_4_2 + a_2_1·b_2_22
- a_4_2·a_3_2
- a_4_2·b_3_4 + a_4_2·b_3_3
- b_1_1·a_3_2·b_3_3 + b_4_6·a_3_2 + a_4_2·b_3_4 + a_2_1·b_2_2·b_3_3
- b_2_2·b_4_6·b_1_1 + a_4_2·b_3_4 + a_2_1·b_2_2·b_3_3
- b_4_7·b_1_13 + b_4_6·b_3_4 + b_4_6·b_3_3 + b_2_2·b_4_7·b_1_1 + b_1_1·a_3_2·b_3_3
+ b_4_7·a_3_2 + a_4_2·b_3_4 + a_2_1·b_2_2·b_3_3
- b_4_7·b_1_13 + b_4_6·b_3_4 + b_4_6·b_3_3 + b_1_1·a_3_2·b_3_3 + b_4_7·a_3_2 + a_4_2·b_3_4
+ b_2_2·a_5_6 + a_2_1·b_2_2·b_3_3
- a_2_1·a_5_6
- b_4_7·b_1_13 + b_4_6·b_3_4 + b_4_6·b_3_3 + b_1_1·a_3_2·b_3_3 + b_4_7·a_3_2 + a_4_2·b_3_4
+ a_2_1·b_5_9 + a_2_1·b_2_2·b_3_3
- b_4_7·b_1_13 + b_4_6·b_3_3 + b_2_2·b_5_10 + b_2_2·b_5_9 + b_1_1·a_3_2·b_3_3
+ b_4_7·a_3_2 + a_4_2·b_3_4 + a_2_1·b_2_2·b_3_3
- b_4_7·b_1_13 + b_4_6·b_3_4 + b_4_6·b_3_3 + b_1_1·a_3_2·b_3_3 + b_4_7·a_3_2
+ a_2_1·b_5_10
- a_6_6·a_1_0
- b_4_7·b_1_13 + b_4_6·b_3_4 + b_4_6·b_3_3 + a_6_6·b_1_1 + a_4_2·b_3_4 + a_2_1·b_2_2·b_3_3
- b_6_13·a_1_0
- b_6_13·b_1_1 + b_4_7·b_3_3 + b_4_7·b_1_13 + b_4_6·b_1_13 + b_2_2·b_5_9 + b_4_7·a_3_2
- a_4_22
- b_4_6·b_1_1·b_3_3 + b_4_62 + b_2_22·b_4_7 + b_4_7·b_1_1·a_3_2 + b_4_6·b_1_1·a_3_2
+ a_2_1·b_2_2·b_4_6 + a_2_1·b_2_23
- a_4_2·b_4_6 + a_2_1·b_2_2·b_4_7 + a_2_1·b_2_2·b_4_6
- a_3_2·a_5_6
- b_3_4·a_5_6 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6
- b_3_3·a_5_6 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6
- b_2_2·b_1_1·b_5_9 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6
- a_3_2·b_5_10 + a_3_2·b_5_9 + a_2_1·b_2_2·b_4_6
- b_3_4·b_5_10 + b_3_4·b_5_9 + b_2_22·b_4_6 + a_4_2·b_4_6
- b_3_3·b_5_10 + b_3_3·b_5_9 + b_2_22·b_4_6 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6
- b_3_4·b_5_9 + b_4_6·b_1_1·b_3_3 + b_4_62 + b_4_7·b_1_1·a_3_2 + b_4_6·b_1_1·a_3_2
+ a_4_2·b_4_7 + b_2_2·a_6_6
- a_2_1·a_6_6
- b_3_4·b_5_9 + b_4_6·b_1_1·b_3_3 + b_4_62 + b_4_7·b_1_1·a_3_2 + b_4_6·b_1_1·a_3_2
+ a_4_2·b_4_6 + a_2_1·b_6_13 + a_2_1·b_2_23
- a_1_0·a_7_8
- a_3_2·b_5_9 + b_1_1·a_7_8 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6
- a_1_0·b_7_16
- b_3_3·b_5_9 + b_1_1·b_7_16 + b_1_13·b_5_9 + b_4_7·b_1_1·b_3_3 + b_4_6·b_1_1·b_3_3
+ b_4_62 + a_3_2·b_5_9 + b_4_7·b_1_1·a_3_2 + a_2_1·b_2_2·b_4_6 + a_2_1·b_2_23
- a_1_0·b_7_17
- b_3_4·b_5_9 + b_1_1·b_7_17 + b_4_6·b_1_14 + b_4_62 + a_3_2·b_5_9 + b_4_7·b_1_1·a_3_2
+ b_4_6·b_1_1·a_3_2 + a_4_2·b_4_7 + a_4_2·b_4_6 + a_2_1·b_2_2·b_4_6 + a_2_1·b_2_23
- a_4_2·a_5_6
- b_4_6·a_5_6 + a_4_2·b_5_9 + a_2_1·b_2_2·b_5_9
- a_4_2·b_5_10 + a_4_2·b_5_9 + a_2_1·b_2_2·b_5_10
- b_4_6·b_5_10 + b_4_6·b_5_9 + b_2_2·b_4_7·b_3_3 + a_4_2·b_5_9 + a_2_1·b_2_22·b_3_3
- a_6_6·a_3_2
- b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9 + a_6_6·b_3_4 + b_4_6·a_5_6 + a_4_2·b_5_10 + a_4_2·b_5_9
+ a_2_1·b_2_22·b_3_3
- b_4_7·b_1_12·b_3_3 + b_4_6·b_4_7·b_1_1 + b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9
+ a_6_6·b_3_3 + a_4_2·b_5_10 + a_4_2·b_5_9 + a_2_1·b_2_22·b_3_3
- b_4_7·b_1_12·b_3_3 + b_4_6·b_4_7·b_1_1 + b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9
+ b_6_13·a_3_2 + b_4_6·b_1_12·a_3_2 + a_4_2·b_5_9
- b_6_13·b_3_4 + b_6_13·b_3_3 + b_4_72·b_1_1 + b_4_6·b_4_7·b_1_1 + b_4_62·b_1_1
+ b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9 + b_4_7·a_5_6 + b_4_6·a_5_6 + b_4_6·b_1_12·a_3_2
- b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9 + a_4_2·b_5_10 + b_2_2·a_7_8 + a_2_1·b_2_22·b_3_3
- a_2_1·a_7_8
- b_6_13·b_3_4 + b_2_2·b_7_16 + b_4_7·a_5_6 + b_4_6·a_5_6 + a_4_2·b_5_10
- b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9 + b_4_6·a_5_6 + a_4_2·b_5_9 + a_2_1·b_7_16
- b_6_13·b_3_4 + b_4_7·b_5_10 + b_4_7·b_5_9 + b_2_2·b_7_17 + b_4_7·a_5_6 + b_4_6·a_5_6
+ a_4_2·b_5_10 + a_4_2·b_5_9
- b_2_2·b_4_7·b_3_3 + b_2_22·b_5_9 + a_4_2·b_5_9 + a_2_1·b_7_17
- a_8_8·a_1_0
- b_4_7·b_1_12·b_3_3 + b_4_6·b_4_7·b_1_1 + a_8_8·b_1_1 + b_4_7·b_1_12·a_3_2
+ b_4_6·a_5_6 + b_4_6·b_1_12·a_3_2
- a_5_62
- a_5_6·b_5_9 + a_2_1·b_4_72
- b_5_102 + b_5_92 + b_2_23·b_4_7 + a_2_1·b_2_22·b_4_7 + a_2_1·b_2_24
- a_5_6·b_5_10 + a_2_1·b_4_72 + a_2_1·b_4_6·b_4_7
- a_4_2·a_6_6
- b_5_9·b_5_10 + b_5_92 + b_2_2·b_4_6·b_4_7 + b_4_7·a_3_2·b_3_3 + b_4_6·a_3_2·b_3_3
+ b_4_6·a_6_6 + a_2_1·b_4_6·b_4_7
- b_5_9·b_5_10 + b_5_92 + b_2_2·b_4_6·b_4_7 + a_4_2·b_6_13 + a_2_1·b_4_72
+ a_2_1·b_4_6·b_4_7 + a_2_1·b_2_2·b_6_13
- a_3_2·a_7_8
- b_5_9·b_5_10 + b_5_92 + b_2_2·b_4_6·b_4_7 + b_3_4·a_7_8 + a_4_2·b_6_13 + a_2_1·b_4_72
+ a_2_1·b_2_22·b_4_7 + a_2_1·b_2_22·b_4_6 + a_2_1·b_2_24
- b_5_9·b_5_10 + b_5_92 + b_1_13·b_7_16 + b_1_15·b_5_9 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_4_7·b_1_12 + b_2_2·b_4_6·b_4_7 + b_3_3·a_7_8 + b_4_7·a_3_2·b_3_3 + b_4_6·a_3_2·b_3_3 + b_4_6·b_1_13·a_3_2 + a_4_2·b_6_13 + a_2_1·b_4_72 + a_2_1·b_4_6·b_4_7 + a_2_1·b_2_24
- b_3_3·a_7_8 + a_3_2·b_7_16 + b_1_13·a_7_8 + b_4_7·a_3_2·b_3_3 + a_2_1·b_4_6·b_4_7
+ a_2_1·b_2_22·b_4_6 + a_2_1·b_2_24
- b_5_9·b_5_10 + b_5_92 + b_3_4·b_7_16 + b_2_2·b_4_6·b_4_7 + b_2_22·b_6_13 + a_4_2·b_6_13
+ a_2_1·b_4_6·b_4_7 + a_2_1·b_2_22·b_4_6
- b_3_3·b_7_16 + b_4_7·b_1_1·b_5_9 + b_4_72·b_1_12 + b_4_6·b_1_1·b_5_9 + b_2_22·b_6_13
+ b_1_13·a_7_8 + b_4_6·a_3_2·b_3_3 + a_2_1·b_4_6·b_4_7
- b_5_9·b_5_10 + b_5_92 + b_2_2·b_4_6·b_4_7 + a_3_2·b_7_17 + b_4_6·a_3_2·b_3_3
+ b_4_6·b_1_13·a_3_2 + a_4_2·b_6_13 + a_2_1·b_4_72 + a_2_1·b_2_22·b_4_6
- b_5_9·b_5_10 + b_5_92 + b_3_4·b_7_17 + b_2_22·b_6_13 + a_4_2·b_6_13 + a_2_1·b_4_72
+ a_2_1·b_4_6·b_4_7 + a_2_1·b_2_22·b_4_7 + a_2_1·b_2_22·b_4_6
- b_5_9·b_5_10 + b_5_92 + b_3_3·b_7_17 + b_4_6·b_4_7·b_1_12 + b_4_62·b_1_12
+ b_2_22·b_6_13 + b_3_3·a_7_8 + b_4_6·a_3_2·b_3_3 + b_4_6·b_1_13·a_3_2 + a_4_2·b_6_13 + a_2_1·b_4_72 + a_2_1·b_4_6·b_4_7 + a_2_1·b_2_22·b_4_6 + a_2_1·b_2_24
- b_5_92 + b_4_7·b_1_1·b_5_9 + b_4_72·b_1_12 + b_4_6·b_1_16 + b_2_2·b_4_72
+ c_8_22·b_1_12
- a_4_2·b_6_13 + b_2_2·a_8_8 + a_2_1·b_4_72 + a_2_1·b_4_6·b_4_7
- a_2_1·a_8_8
- a_1_0·b_9_27
- b_1_1·b_9_27 + b_1_15·b_5_9 + b_4_7·b_1_1·b_5_9 + b_4_6·b_1_16 + b_4_6·b_4_7·b_1_12
+ b_3_3·a_7_8 + b_1_13·a_7_8 + b_4_7·a_3_2·b_3_3 + b_4_6·b_1_13·a_3_2 + a_4_2·b_6_13 + a_2_1·b_4_72 + a_2_1·b_2_22·b_4_7
- a_6_6·a_5_6
- b_4_72·b_3_4 + b_2_2·b_4_7·b_5_9 + b_6_13·a_5_6
- a_4_2·a_7_8
- b_1_1·a_3_2·b_7_16 + b_1_14·a_7_8 + a_6_6·b_5_10 + a_6_6·b_5_9 + b_4_6·a_7_8
+ b_4_6·b_4_7·a_3_2
- a_6_6·b_5_10 + a_6_6·b_5_9 + a_4_2·b_7_16 + a_2_1·b_4_7·b_5_9 + a_2_1·b_2_2·b_7_16
+ a_2_1·b_2_22·b_5_10
- b_6_13·b_5_10 + b_6_13·b_5_9 + b_4_7·b_1_12·b_5_9 + b_4_6·b_7_16 + b_4_6·b_1_12·b_5_9
+ b_4_6·b_4_7·b_3_3 + b_2_2·b_4_6·b_5_9 + a_6_6·b_5_10 + a_6_6·b_5_9 + b_4_7·a_7_8 + b_4_62·a_3_2 + a_2_1·b_2_22·b_5_10 + a_2_1·b_2_22·b_5_9
- a_6_6·b_5_10 + b_4_7·a_7_8 + b_4_6·a_7_8 + a_4_2·b_7_17 + a_4_2·b_7_16
- b_2_2·b_4_6·b_5_9 + b_2_22·b_7_17 + b_2_22·b_7_16 + a_6_6·b_5_9 + b_4_7·a_7_8
+ b_4_6·a_7_8 + a_2_1·b_4_7·b_5_9 + a_2_1·b_2_22·b_5_10 + a_2_1·b_2_22·b_5_9
- a_6_6·b_5_9 + b_4_7·a_7_8 + b_4_6·a_7_8 + a_4_2·b_7_16 + a_2_1·b_2_2·b_7_17
+ a_2_1·b_2_22·b_5_10
- b_6_13·b_5_10 + b_6_13·b_5_9 + b_4_6·b_7_17 + b_4_62·b_3_3 + b_4_62·b_1_13
+ b_2_2·b_4_7·b_5_9 + b_2_23·b_5_9 + b_4_6·a_7_8 + a_4_2·b_7_16 + a_2_1·b_2_22·b_5_10 + a_2_1·b_2_22·b_5_9 + a_2_1·b_2_23·b_3_3
- b_6_13·b_5_9 + b_4_7·b_7_16 + b_4_72·b_3_3 + b_4_6·b_1_12·b_5_9 + b_2_2·b_4_7·b_5_9
+ b_4_6·b_4_7·a_3_2 + a_2_1·b_4_7·b_5_9 + a_2_1·b_2_22·b_5_9 + a_2_1·b_2_23·b_3_3 + b_2_2·c_8_22·b_1_1
- a_8_8·a_3_2
- a_8_8·b_3_4 + a_6_6·b_5_10 + b_4_7·a_7_8 + b_4_6·a_7_8 + a_4_2·b_7_16
- a_8_8·b_3_3 + a_6_6·b_5_10 + b_4_7·a_7_8 + b_4_72·a_3_2 + b_4_6·a_7_8 + b_4_62·a_3_2
+ a_4_2·b_7_16 + a_2_1·b_4_7·b_5_9 + a_2_1·b_2_22·b_5_9
- b_6_13·b_5_10 + b_6_13·b_5_9 + b_2_2·b_9_27 + b_2_2·b_4_6·b_5_9 + b_2_23·b_5_10
+ b_2_24·b_3_3 + a_6_6·b_5_9 + b_4_7·a_7_8 + b_4_6·a_7_8 + a_4_2·b_7_16 + a_2_1·b_2_22·b_5_10
- a_6_6·b_5_9 + b_4_7·a_7_8 + b_4_6·a_7_8 + a_2_1·b_9_27 + a_2_1·b_2_23·b_3_3
- a_6_62
- a_5_6·a_7_8
- b_5_10·a_7_8 + b_5_9·a_7_8 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_72
+ a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7 + a_2_1·b_2_23·b_4_6
- a_5_6·b_7_16 + a_2_1·b_4_7·b_6_13
- b_5_10·b_7_16 + b_5_9·b_7_16 + b_2_2·b_4_6·b_6_13 + b_2_2·b_4_7·a_6_6
+ a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_6·b_4_7
- b_5_10·b_7_17 + b_4_72·b_1_1·b_3_3 + b_4_6·b_1_1·b_7_16 + b_4_6·b_4_72
+ b_4_62·b_4_7 + b_2_2·b_4_7·b_6_13 + b_2_2·b_4_6·b_6_13 + b_5_10·a_7_8 + a_6_6·b_6_13 + b_4_6·b_1_1·a_7_8 + b_4_6·b_4_7·b_1_1·a_3_2 + a_2_1·b_4_7·b_6_13 + a_2_1·b_2_22·b_6_13 + a_2_1·b_2_23·b_4_7 + a_2_1·b_2_23·b_4_6
- a_5_6·b_7_17 + b_2_2·b_4_7·a_6_6 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7
- b_5_9·b_7_17 + b_4_72·b_1_1·b_3_3 + b_4_6·b_1_1·b_7_16 + b_4_6·b_4_72 + b_4_62·b_4_7
+ b_2_2·b_4_7·b_6_13 + b_2_22·b_4_72 + b_5_10·a_7_8 + a_6_6·b_6_13 + b_4_6·b_1_1·a_7_8 + b_4_6·b_4_7·b_1_1·a_3_2 + b_2_2·b_4_7·a_6_6 + a_2_1·b_4_7·b_6_13 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_22·b_6_13 + a_2_1·b_2_23·b_4_6
- b_5_10·a_7_8 + b_4_7·b_1_1·a_7_8 + b_4_72·b_1_1·a_3_2 + b_4_6·b_1_15·a_3_2
+ b_2_2·b_4_7·a_6_6 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7 + a_2_1·b_2_23·b_4_6 + c_8_22·b_1_1·a_3_2
- b_6_132 + b_4_73 + b_4_62·b_1_14 + b_4_62·b_4_7 + b_2_2·b_4_7·b_6_13
+ b_2_22·b_4_72 + b_2_24·b_4_7 + b_2_26 + b_2_2·b_4_7·a_6_6 + a_2_1·b_4_7·b_6_13 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_22·b_6_13 + b_2_22·c_8_22
- b_5_10·b_7_16 + b_4_72·b_1_1·b_3_3 + b_4_6·b_1_1·b_7_16 + b_4_6·b_1_13·b_5_9
+ b_4_6·b_1_18 + b_4_62·b_1_14 + b_2_2·b_4_7·b_6_13 + b_2_2·b_4_6·b_6_13 + b_5_10·a_7_8 + b_4_7·b_1_1·a_7_8 + b_4_72·b_1_1·a_3_2 + b_4_6·b_1_1·a_7_8 + b_4_6·b_1_15·a_3_2 + b_4_6·b_4_7·b_1_1·a_3_2 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_72 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_6 + a_2_1·b_2_25 + c_8_22·b_1_1·b_3_3 + c_8_22·b_1_14
- a_6_6·b_6_13 + b_4_7·a_8_8 + b_4_6·b_4_7·b_1_1·a_3_2 + b_4_62·b_1_1·a_3_2
+ b_2_2·b_4_7·a_6_6 + a_2_1·b_4_7·b_6_13 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_22·b_6_13 + a_2_1·b_2_25 + a_2_1·b_2_2·c_8_22
- a_4_2·a_8_8
- b_4_72·b_1_1·a_3_2 + b_4_6·a_8_8 + b_4_62·b_1_1·a_3_2 + b_2_2·b_4_7·a_6_6
+ a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_72 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7
- a_3_2·b_9_27 + b_1_15·a_7_8 + b_4_7·b_1_1·a_7_8 + b_4_6·b_1_15·a_3_2
+ b_4_6·b_4_7·b_1_1·a_3_2 + a_2_1·b_4_6·b_6_13 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7 + a_2_1·b_2_23·b_4_6 + a_2_1·b_2_25
- b_3_4·b_9_27 + b_2_2·b_4_6·b_6_13 + b_2_22·b_4_6·b_4_7 + b_2_24·b_4_7 + b_2_24·b_4_6
+ b_2_26 + a_2_1·b_4_7·b_6_13 + a_2_1·b_2_23·b_4_6
- b_3_3·b_9_27 + b_4_7·b_1_1·b_7_16 + b_4_72·b_1_1·b_3_3 + b_4_6·b_1_1·b_7_16
+ b_4_62·b_1_14 + b_2_2·b_4_6·b_6_13 + b_2_22·b_4_6·b_4_7 + b_2_24·b_4_7 + b_2_24·b_4_6 + b_2_26 + b_1_15·a_7_8 + b_4_7·b_1_1·a_7_8 + b_4_72·b_1_1·a_3_2 + b_4_6·b_1_15·a_3_2 + b_4_6·b_4_7·b_1_1·a_3_2 + b_4_62·b_1_1·a_3_2 + a_2_1·b_2_2·b_4_72 + a_2_1·b_2_2·b_4_6·b_4_7 + a_2_1·b_2_23·b_4_7 + a_2_1·b_2_25
- a_6_6·a_7_8
- a_6_6·b_7_17 + b_4_6·a_6_6·b_3_3 + b_4_6·b_4_7·b_1_12·a_3_2 + b_4_62·b_1_12·a_3_2
+ a_2_1·b_4_7·b_7_16 + a_2_1·b_2_22·b_7_17 + a_2_1·b_2_23·b_5_10 + a_2_1·b_2_23·b_5_9 + a_2_1·b_2_24·b_3_3 + a_2_1·c_8_22·b_3_4
- b_6_13·b_7_16 + b_4_72·b_5_9 + b_4_73·b_1_1 + b_4_6·b_1_14·b_5_9
+ b_4_6·b_4_72·b_1_1 + b_4_62·b_4_7·b_1_1 + b_2_2·b_4_7·b_7_16 + b_2_24·b_5_9 + b_2_25·b_3_3 + a_6_6·b_7_17 + b_4_7·b_1_12·a_7_8 + a_2_1·b_4_7·b_7_16 + a_2_1·b_2_22·b_7_16 + a_2_1·b_2_23·b_5_9 + b_2_2·c_8_22·b_3_3
- b_6_13·a_7_8 + a_6_6·b_7_17 + a_6_6·b_7_16 + b_4_7·b_1_12·a_7_8 + b_4_7·a_6_6·b_3_3
+ b_4_6·a_6_6·b_3_3 + b_4_6·b_4_7·b_1_12·a_3_2 + b_4_62·b_1_12·a_3_2 + a_2_1·b_4_7·b_7_17 + a_2_1·b_2_22·b_7_16 + a_2_1·b_2_23·b_5_10 + a_2_1·b_2_24·b_3_3 + a_2_1·c_8_22·b_3_3
- a_8_8·b_5_10 + a_6_6·b_7_17 + a_6_6·b_7_16 + b_4_7·a_6_6·b_3_3 + b_4_6·a_6_6·b_3_3
+ b_4_6·b_4_7·b_1_12·a_3_2 + b_4_62·b_1_12·a_3_2 + a_2_1·b_4_7·b_7_17 + a_2_1·b_2_2·b_4_7·b_5_9 + a_2_1·b_2_23·b_5_10 + a_2_1·b_2_23·b_5_9
- a_8_8·a_5_6
- b_4_7·b_1_12·b_7_16 + b_4_6·b_4_7·b_5_9 + b_4_6·b_4_72·b_1_1 + b_4_62·b_5_9
+ b_2_2·b_4_7·b_7_17 + b_2_2·b_4_7·b_7_16 + b_2_22·b_4_7·b_5_9 + a_8_8·b_5_9 + b_6_13·a_7_8 + a_6_6·b_7_16 + b_4_7·b_1_12·a_7_8 + b_4_6·b_1_12·a_7_8 + b_4_6·b_4_7·b_1_12·a_3_2 + a_2_1·b_4_7·b_7_17 + a_2_1·b_4_7·b_7_16 + a_2_1·b_2_2·b_4_7·b_5_9 + a_2_1·b_2_23·b_5_9
- b_6_13·b_7_17 + b_6_13·b_7_16 + b_4_7·b_9_27 + b_4_7·b_1_12·b_7_16 + b_4_73·b_1_1
+ b_4_6·b_1_14·b_5_9 + b_4_6·b_4_7·b_5_9 + b_4_62·b_1_15 + b_4_62·b_4_7·b_1_1 + b_4_63·b_1_1 + b_2_22·b_4_7·b_5_9 + b_2_23·b_7_17 + b_2_23·b_7_16 + b_2_24·b_5_9 + a_6_6·b_7_17 + a_6_6·b_7_16 + b_4_7·b_1_12·a_7_8 + b_4_7·a_6_6·b_3_3 + b_4_62·b_1_12·a_3_2 + a_2_1·b_4_7·b_7_16 + a_2_1·b_2_22·b_7_16 + a_2_1·b_2_23·b_5_9
- b_4_7·b_1_12·b_7_16 + b_4_6·b_4_7·b_5_9 + b_4_6·b_4_72·b_1_1 + b_4_62·b_5_9
+ b_2_2·b_4_7·b_7_17 + b_2_2·b_4_7·b_7_16 + b_2_22·b_4_7·b_5_9 + b_6_13·a_7_8 + a_6_6·b_7_17 + b_4_7·b_1_12·a_7_8 + b_4_7·a_6_6·b_3_3 + b_4_6·b_1_12·a_7_8 + b_4_6·a_6_6·b_3_3 + b_4_62·b_1_12·a_3_2 + a_4_2·b_9_27 + a_2_1·b_4_7·b_7_17 + a_2_1·b_2_23·b_5_10 + a_2_1·b_2_24·b_3_3
- b_4_7·b_1_12·b_7_16 + b_4_6·b_4_7·b_5_9 + b_4_6·b_4_72·b_1_1 + b_4_62·b_5_9
+ b_2_2·b_4_7·b_7_17 + b_2_2·b_4_7·b_7_16 + b_2_22·b_4_7·b_5_9 + b_6_13·a_7_8 + a_6_6·b_7_17 + b_4_7·b_1_12·a_7_8 + b_4_7·a_6_6·b_3_3 + b_4_6·b_1_12·a_7_8 + b_4_6·a_6_6·b_3_3 + b_4_62·b_1_12·a_3_2 + a_2_1·b_4_7·b_7_17 + a_2_1·b_4_7·b_7_16 + a_2_1·b_2_2·b_9_27 + a_2_1·b_2_2·b_4_7·b_5_9 + a_2_1·b_2_22·b_7_17 + a_2_1·b_2_22·b_7_16 + a_2_1·b_2_24·b_3_3
- b_4_7·b_1_12·b_7_16 + b_4_6·b_9_27 + b_4_6·b_1_14·b_5_9 + b_4_6·b_4_72·b_1_1
+ b_4_62·b_5_9 + b_4_62·b_1_15 + b_4_62·b_4_7·b_1_1 + b_2_2·b_4_7·b_7_16 + b_2_23·b_7_17 + b_2_23·b_7_16 + b_2_24·b_5_10 + b_6_13·a_7_8 + a_6_6·b_7_17 + b_4_7·a_6_6·b_3_3 + b_4_6·b_4_7·b_1_12·a_3_2 + a_2_1·b_2_22·b_7_17 + a_2_1·b_2_22·b_7_16 + a_2_1·b_2_23·b_5_10 + a_2_1·b_2_24·b_3_3
- a_7_82
- b_7_172 + b_7_16·b_7_17 + b_4_73·b_1_12 + b_4_6·b_1_15·b_5_9
+ b_4_6·b_4_7·b_1_1·b_5_9 + b_4_6·b_4_7·b_6_13 + b_4_62·b_1_16 + b_4_62·b_4_7·b_1_12 + b_2_2·b_4_73 + a_7_8·b_7_17 + a_7_8·b_7_16 + b_4_72·a_6_6 + b_4_6·b_4_7·a_6_6 + b_4_62·b_1_13·a_3_2 + a_2_1·b_4_73 + a_2_1·b_4_6·b_4_72 + a_2_1·b_2_2·b_4_7·b_6_13 + a_2_1·b_2_22·b_4_72
- b_7_172 + b_7_162 + b_4_72·b_1_1·b_5_9 + b_4_6·b_1_110 + b_4_62·b_1_1·b_5_9
+ b_4_62·b_1_16 + b_4_63·b_1_12 + b_2_2·b_4_73 + c_8_22·b_1_16 + b_4_7·c_8_22·b_1_12
- b_7_16·b_7_17 + b_4_73·b_1_12 + b_4_6·b_1_15·b_5_9 + b_4_6·b_4_7·b_1_1·b_5_9
+ b_4_6·b_4_7·b_6_13 + b_2_2·b_4_73 + b_2_22·b_4_7·b_6_13 + b_2_25·b_4_7 + b_2_27 + a_7_8·b_7_16 + b_4_72·a_6_6 + b_4_6·a_3_2·b_7_16 + b_4_6·b_4_7·a_6_6 + b_4_62·a_3_2·b_3_3 + b_4_62·b_1_13·a_3_2 + b_4_62·a_6_6 + a_2_1·b_4_73 + a_2_1·b_2_2·b_4_7·b_6_13 + a_2_1·b_2_22·b_4_72 + b_2_23·c_8_22
- b_7_172 + b_7_16·b_7_17 + b_4_73·b_1_12 + b_4_6·b_1_15·b_5_9
+ b_4_6·b_4_7·b_1_1·b_5_9 + b_4_6·b_4_7·b_6_13 + b_4_62·b_1_16 + b_4_62·b_4_7·b_1_12 + b_2_2·b_4_73 + a_7_8·b_7_16 + b_4_72·a_6_6 + b_4_6·a_3_2·b_7_16 + b_4_6·b_4_7·a_6_6 + b_4_62·a_3_2·b_3_3 + b_4_62·b_1_13·a_3_2 + b_4_62·a_6_6 + a_2_1·b_4_73 + a_2_1·b_4_6·b_4_72 + a_2_1·b_2_23·b_6_13 + a_2_1·b_2_24·b_4_7 + a_2_1·b_2_26 + a_2_1·b_2_22·c_8_22
- a_7_8·b_7_16 + b_4_6·a_3_2·b_7_16 + b_4_6·b_1_13·a_7_8 + b_4_6·b_1_17·a_3_2
+ b_4_6·b_4_7·a_6_6 + b_4_62·a_3_2·b_3_3 + b_4_62·b_1_13·a_3_2 + b_4_62·a_6_6 + a_2_1·b_4_6·b_4_72 + a_2_1·b_2_2·b_4_7·b_6_13 + a_2_1·b_2_22·b_4_72 + a_2_1·b_2_23·b_6_13 + a_2_1·b_2_24·b_4_7 + a_2_1·b_2_26 + c_8_22·a_3_2·b_3_3 + c_8_22·b_1_13·a_3_2
- b_7_172 + b_7_16·b_7_17 + b_4_73·b_1_12 + b_4_6·b_1_15·b_5_9
+ b_4_6·b_4_7·b_1_1·b_5_9 + b_4_6·b_4_7·b_6_13 + b_4_62·b_1_16 + b_4_62·b_4_7·b_1_12 + b_2_2·b_4_73 + a_7_8·b_7_16 + b_6_13·a_8_8 + b_4_6·a_3_2·b_7_16 + b_4_6·b_4_7·a_6_6 + b_4_62·a_6_6 + a_2_1·b_2_2·b_4_7·b_6_13 + a_2_1·b_2_22·b_4_72 + a_2_1·b_2_22·b_4_6·b_4_7 + a_2_1·b_2_23·b_6_13 + a_2_1·b_2_24·b_4_7 + a_2_1·b_2_24·b_4_6 + a_2_1·b_4_6·c_8_22
- a_6_6·a_8_8
- b_7_16·b_7_17 + b_7_162 + b_5_10·b_9_27 + b_4_73·b_1_12 + b_4_62·b_6_13
+ b_4_63·b_1_12 + b_2_2·b_4_6·b_4_72 + b_2_25·b_4_6 + b_4_6·a_3_2·b_7_16 + b_4_6·b_1_13·a_7_8 + b_4_6·b_4_7·a_6_6 + b_4_62·a_3_2·b_3_3 + b_4_62·b_1_13·a_3_2 + b_4_62·a_6_6 + b_2_2·b_4_7·a_8_8 + a_2_1·b_4_6·b_4_72 + a_2_1·b_2_22·b_4_72 + a_2_1·b_2_22·b_4_6·b_4_7 + a_2_1·b_2_23·b_6_13 + a_2_1·b_2_24·b_4_7 + a_2_1·b_2_24·b_4_6 + a_2_1·b_2_26 + a_2_1·b_4_6·c_8_22
- a_5_6·b_9_27 + b_2_2·b_4_7·a_8_8 + a_2_1·b_4_73 + a_2_1·b_2_2·b_4_7·b_6_13
+ a_2_1·b_2_22·b_4_72 + a_2_1·b_2_22·b_4_6·b_4_7 + a_2_1·b_2_24·b_4_7
- b_7_16·b_7_17 + b_7_162 + b_5_9·b_9_27 + b_4_73·b_1_12 + b_4_62·b_6_13
+ b_4_63·b_1_12 + b_2_2·b_4_6·b_4_72 + b_2_22·b_4_7·b_6_13 + b_2_23·b_4_72 + b_2_23·b_4_6·b_4_7 + b_2_25·b_4_7 + b_4_6·a_3_2·b_7_16 + b_4_6·b_1_13·a_7_8 + b_4_6·b_4_7·a_6_6 + b_4_62·a_3_2·b_3_3 + b_4_62·b_1_13·a_3_2 + b_4_62·a_6_6 + b_2_2·b_4_7·a_8_8 + a_2_1·b_2_24·b_4_6 + a_2_1·b_4_6·c_8_22
- a_8_8·b_7_17 + a_8_8·b_7_16 + b_4_72·a_7_8 + b_4_73·a_3_2 + b_4_6·b_1_14·a_7_8
+ b_4_6·b_4_7·a_7_8 + b_4_6·b_4_72·a_3_2 + b_4_62·a_7_8 + b_4_62·b_1_14·a_3_2 + b_4_63·a_3_2 + a_2_1·b_2_2·b_4_7·b_7_16 + a_2_1·b_2_22·b_4_7·b_5_9 + a_2_1·b_2_23·b_7_17 + a_2_1·b_2_23·b_7_16 + a_2_1·b_2_24·b_5_9
- a_8_8·a_7_8
- a_8_8·b_7_16 + b_4_72·a_7_8 + b_4_73·a_3_2 + b_4_6·b_1_14·a_7_8 + b_4_6·b_4_7·a_7_8
+ b_4_62·a_7_8 + b_4_62·b_4_7·a_3_2 + a_2_1·b_4_7·b_9_27 + a_2_1·b_2_22·b_4_7·b_5_9 + a_2_1·b_2_24·b_5_10 + a_2_1·b_2_25·b_3_3 + a_2_1·c_8_22·b_5_10 + a_2_1·c_8_22·b_5_9 + a_2_1·b_2_2·c_8_22·b_3_3
- b_6_13·b_9_27 + b_4_72·b_7_17 + b_4_72·b_7_16 + b_4_73·b_3_3 + b_4_6·b_1_16·b_5_9
+ b_4_62·b_1_12·b_5_9 + b_4_62·b_1_17 + b_4_63·b_1_13 + b_2_2·b_4_72·b_5_9 + b_2_22·b_4_7·b_7_16 + b_2_23·b_9_27 + b_2_24·b_7_16 + b_2_25·b_5_9 + b_2_26·b_3_3 + a_8_8·b_7_16 + b_4_72·a_7_8 + b_4_6·b_4_72·a_3_2 + b_4_62·a_7_8 + b_4_62·b_1_14·a_3_2 + b_4_63·a_3_2 + a_2_1·b_2_2·b_4_7·b_7_17 + a_2_1·b_2_2·b_4_7·b_7_16 + a_2_1·b_2_24·b_5_10 + a_2_1·b_2_24·b_5_9 + a_2_1·b_2_25·b_3_3 + b_2_2·c_8_22·b_5_10 + b_2_2·c_8_22·b_5_9 + a_2_1·b_2_2·c_8_22·b_3_3
- a_8_8·b_7_16 + a_6_6·b_9_27 + b_4_73·a_3_2 + b_4_6·b_4_72·a_3_2
+ b_4_62·b_1_14·a_3_2 + b_4_63·a_3_2 + a_2_1·b_4_72·b_5_9 + a_2_1·b_2_2·b_4_7·b_7_16 + a_2_1·b_2_23·b_7_16 + a_2_1·b_2_24·b_5_9 + a_2_1·b_2_2·c_8_22·b_3_3
- a_8_82
- b_7_16·b_9_27 + b_4_6·b_1_17·b_5_9 + b_4_6·b_1_112 + b_4_6·b_4_73
+ b_4_62·b_1_1·b_7_16 + b_4_62·b_1_13·b_5_9 + b_4_62·b_1_18 + b_4_63·b_1_14 + b_4_64 + b_2_23·b_4_7·b_6_13 + b_2_23·b_4_6·b_6_13 + b_2_24·b_4_72 + b_2_24·b_4_6·b_4_7 + b_2_25·b_6_13 + b_2_26·b_4_6 + b_4_72·b_1_1·a_7_8 + b_4_72·a_8_8 + b_4_6·b_1_19·a_3_2 + b_4_6·b_4_7·a_8_8 + b_4_62·b_4_7·b_1_1·a_3_2 + b_4_63·b_1_1·a_3_2 + b_2_2·b_4_72·a_6_6 + a_2_1·b_4_6·b_4_7·b_6_13 + a_2_1·b_2_2·b_4_73 + a_2_1·b_2_23·b_4_6·b_4_7 + a_2_1·b_2_25·b_4_6 + c_8_22·b_1_18 + b_4_7·c_8_22·b_1_1·b_3_3 + b_4_6·c_8_22·b_1_14 + b_4_62·c_8_22 + b_2_22·b_4_7·c_8_22 + b_2_22·b_4_6·c_8_22 + c_8_22·b_1_15·a_3_2 + b_4_6·c_8_22·b_1_1·a_3_2 + a_2_1·b_2_23·c_8_22
- b_7_17·b_9_27 + b_4_73·b_1_1·b_3_3 + b_4_6·b_1_17·b_5_9 + b_4_6·b_4_7·b_1_1·b_7_16
+ b_4_6·b_4_73 + b_4_62·b_1_13·b_5_9 + b_4_62·b_1_18 + b_4_62·b_4_72 + b_4_63·b_1_14 + b_4_63·b_4_7 + b_4_64 + b_2_2·b_4_72·b_6_13 + b_2_23·b_4_7·b_6_13 + b_2_23·b_4_6·b_6_13 + b_2_25·b_6_13 + b_2_26·b_4_6 + b_4_72·b_1_1·a_7_8 + b_4_72·a_8_8 + b_4_6·b_1_15·a_7_8 + b_4_6·b_1_19·a_3_2 + b_4_6·b_4_7·b_1_1·a_7_8 + b_4_6·b_4_7·a_8_8 + b_4_62·b_4_7·b_1_1·a_3_2 + b_4_63·b_1_1·a_3_2 + a_2_1·b_4_6·b_4_7·b_6_13 + a_2_1·b_2_23·b_4_72 + a_2_1·b_2_25·b_4_6 + b_2_22·b_4_6·c_8_22 + c_8_22·b_1_15·a_3_2 + b_4_7·c_8_22·b_1_1·a_3_2 + a_2_1·b_2_2·b_4_7·c_8_22
- a_7_8·b_9_27 + b_4_72·b_1_1·a_7_8 + b_4_6·b_1_15·a_7_8 + b_4_6·b_1_19·a_3_2
+ b_4_6·b_4_7·b_1_1·a_7_8 + b_4_6·b_4_7·a_8_8 + b_4_62·b_1_1·a_7_8 + b_4_63·b_1_1·a_3_2 + a_2_1·b_2_23·b_4_72 + a_2_1·b_2_23·b_4_6·b_4_7 + a_2_1·b_2_24·b_6_13 + a_2_1·b_2_25·b_4_7 + a_2_1·b_2_25·b_4_6 + a_2_1·b_2_27 + c_8_22·b_1_15·a_3_2 + b_4_7·c_8_22·b_1_1·a_3_2 + a_2_1·b_2_2·b_4_6·c_8_22
- a_8_8·b_9_27 + b_4_7·a_6_6·b_7_16 + b_4_72·a_6_6·b_3_3 + b_4_6·b_1_16·a_7_8
+ b_4_6·b_4_7·b_1_12·a_7_8 + b_4_6·b_4_7·a_6_6·b_3_3 + b_4_62·b_1_16·a_3_2 + b_4_62·a_6_6·b_3_3 + b_4_62·b_4_7·b_1_12·a_3_2 + a_2_1·b_4_72·b_7_17 + a_2_1·b_2_2·b_4_7·b_9_27 + a_2_1·b_2_2·b_4_72·b_5_9 + a_2_1·b_2_22·b_4_7·b_7_17 + a_2_1·b_2_22·b_4_7·b_7_16 + a_2_1·b_2_23·b_4_7·b_5_9 + a_2_1·b_2_24·b_7_17 + a_2_1·b_2_25·b_5_10 + a_2_1·b_2_25·b_5_9 + a_2_1·b_2_2·c_8_22·b_5_10 + a_2_1·b_2_2·c_8_22·b_5_9
- b_9_272 + b_4_73·b_1_1·b_5_9 + b_4_74·b_1_12 + b_4_6·b_1_114
+ b_4_62·b_1_15·b_5_9 + b_4_62·b_1_110 + b_4_63·b_6_13 + b_2_2·b_4_74 + b_2_22·b_4_72·b_6_13 + b_2_22·b_4_6·b_4_7·b_6_13 + b_2_23·b_4_73 + b_2_29 + b_4_62·b_4_7·a_6_6 + b_4_63·a_3_2·b_3_3 + b_4_63·a_6_6 + a_2_1·b_2_2·b_4_6·b_4_7·b_6_13 + a_2_1·b_2_22·b_4_73 + a_2_1·b_2_22·b_4_6·b_4_72 + a_2_1·b_2_23·b_4_6·b_6_13 + a_2_1·b_2_24·b_4_72 + a_2_1·b_2_26·b_4_7 + a_2_1·b_2_28 + c_8_22·b_1_110 + b_4_72·c_8_22·b_1_12 + b_2_23·b_4_7·c_8_22 + a_2_1·b_2_22·b_4_7·c_8_22 + a_2_1·b_2_24·c_8_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_22, a Duflot regular element of degree 8
- b_1_14 + b_4_7, an element of degree 4
- b_4_7·b_1_12 + b_2_2·b_4_7 + b_2_23, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, 5, 9, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- a_4_2 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- b_4_7 → 0, an element of degree 4
- a_5_6 → 0, an element of degree 5
- b_5_9 → 0, an element of degree 5
- b_5_10 → 0, an element of degree 5
- a_6_6 → 0, an element of degree 6
- b_6_13 → 0, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_16 → 0, an element of degree 7
- b_7_17 → 0, an element of degree 7
- a_8_8 → 0, an element of degree 8
- c_8_22 → c_1_08, an element of degree 8
- b_9_27 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → 0, an element of degree 3
- a_4_2 → 0, an element of degree 4
- b_4_6 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_7 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_6 → 0, an element of degree 5
- b_5_9 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_10 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- a_6_6 → 0, an element of degree 6
- b_6_13 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_15·c_1_2, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_16 → c_1_13·c_1_24 + c_1_15·c_1_22 + c_1_02·c_1_13·c_1_22 + c_1_02·c_1_14·c_1_2
+ c_1_02·c_1_15 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13, an element of degree 7
- b_7_17 → c_1_13·c_1_24 + c_1_16·c_1_2, an element of degree 7
- a_8_8 → 0, an element of degree 8
- c_8_22 → c_1_28 + c_1_14·c_1_24 + c_1_16·c_1_22 + c_1_17·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_27 → c_1_1·c_1_28 + c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24
+ c_1_16·c_1_23 + c_1_18·c_1_2 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_17 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_15, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → c_1_23, an element of degree 3
- b_3_4 → c_1_23, an element of degree 3
- a_4_2 → 0, an element of degree 4
- b_4_6 → c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_4_7 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- a_5_6 → 0, an element of degree 5
- b_5_9 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_5_10 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- a_6_6 → 0, an element of degree 6
- b_6_13 → c_1_26 + c_1_1·c_1_25 + c_1_16 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_16 → c_1_27 + c_1_1·c_1_26 + c_1_16·c_1_2 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- b_7_17 → c_1_13·c_1_24 + c_1_15·c_1_22 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- a_8_8 → 0, an element of degree 8
- c_8_22 → c_1_28 + c_1_1·c_1_27 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_18
+ c_1_02·c_1_26 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_27 → c_1_29 + c_1_14·c_1_25 + c_1_15·c_1_24 + c_1_17·c_1_22 + c_1_18·c_1_2
+ c_1_02·c_1_27 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25 + c_1_04·c_1_25 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_23, an element of degree 9
|