Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 553 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 − t + 1 |
| (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- a_3_5, a nilpotent element of degree 3
- a_3_9, a nilpotent element of degree 3
- b_3_8, an element of degree 3
- b_3_10, an element of degree 3
- a_4_11, a nilpotent element of degree 4
- a_4_14, a nilpotent element of degree 4
- b_4_16, an element of degree 4
- c_4_17, a Duflot regular element of degree 4
- c_4_18, a Duflot regular element of degree 4
- a_5_16, a nilpotent element of degree 5
- b_5_29, an element of degree 5
- a_6_26, a nilpotent element of degree 6
Ring relations
There are 103 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_2_3·a_1_0
- a_2_4·a_1_0 + a_2_3·a_1_2
- a_2_3·b_1_1 + a_2_4·a_1_2
- b_2_5·a_1_0
- a_2_32
- a_2_3·a_2_4 + a_2_4·a_1_22
- a_2_4·a_1_2·b_1_1 + a_2_42 + a_2_4·a_1_22
- a_1_0·a_3_5
- a_1_2·a_3_5 + a_2_4·a_1_2·b_1_1
- a_1_0·a_3_9
- a_2_3·b_2_5 + a_1_2·a_3_9
- a_1_0·b_3_8
- b_1_1·a_3_5 + a_1_2·b_3_8 + a_2_4·b_1_12 + a_2_4·a_1_22
- a_1_0·b_3_10
- b_1_1·a_3_9 + a_1_2·b_3_10 + a_2_4·b_2_5 + a_2_3·b_2_5
- a_2_3·a_3_5
- a_2_3·a_3_9
- a_2_3·b_3_8 + a_2_4·a_3_5 + a_2_42·b_1_1
- a_1_2·b_1_1·b_3_10 + b_2_5·a_3_5 + a_2_4·b_2_5·b_1_1 + a_2_4·b_2_5·a_1_2
- a_2_3·b_3_10 + a_2_4·a_3_9 + a_2_4·b_2_5·a_1_2
- a_4_11·b_1_1 + b_2_5·a_3_5 + b_2_5·a_1_2·b_1_12 + a_2_4·b_3_8
- a_4_11·a_1_0
- a_4_11·a_1_2 + a_2_4·a_3_5 + a_2_4·b_2_5·a_1_2 + a_2_42·b_1_1
- a_4_14·b_1_1 + b_2_52·a_1_2 + a_2_4·b_3_10 + a_2_4·a_3_9
- a_4_14·a_1_0
- a_4_14·a_1_2 + a_2_4·a_3_9 + a_2_4·b_2_5·a_1_2
- b_4_16·a_1_0
- b_1_12·b_3_10 + b_2_5·b_3_8 + b_4_16·a_1_2 + b_2_5·a_3_5 + b_2_5·a_1_2·b_1_12
+ a_2_4·b_2_5·a_1_2
- a_3_52 + a_2_42·b_1_12
- a_3_92 + b_2_5·a_1_2·a_3_9
- a_3_5·a_3_9 + a_2_42·b_2_5
- a_3_5·b_3_8 + b_2_5·a_1_2·b_1_13 + a_2_4·b_1_1·b_3_8
- a_3_5·b_3_10 + b_2_52·a_1_2·b_1_1 + a_2_4·b_1_1·b_3_10 + a_2_4·a_1_2·b_3_10
- b_3_82 + b_2_5·b_1_14 + a_1_2·b_1_12·b_3_8 + c_4_17·a_1_22
- b_3_102 + b_2_53 + b_2_5·a_1_2·b_3_10 + c_4_18·a_1_22
- a_3_9·b_3_8 + b_2_5·a_1_2·b_3_10 + b_2_5·a_4_11 + a_2_4·b_2_52 + a_3_92
- a_2_3·a_4_11
- a_3_5·b_3_10 + b_2_52·a_1_2·b_1_1 + a_2_4·b_1_1·b_3_10 + a_2_4·a_1_2·b_3_8
+ a_2_4·a_4_11
- a_3_9·b_3_10 + b_2_5·a_4_14 + a_3_92
- a_2_3·a_4_14
- a_3_5·b_3_10 + b_2_52·a_1_2·b_1_1 + a_2_4·b_1_1·b_3_10 + a_3_92 + a_2_4·a_4_14
- a_3_9·b_3_8 + a_3_5·b_3_10 + a_2_3·b_4_16
- b_3_8·b_3_10 + b_2_52·b_1_12 + a_3_9·b_3_8 + a_3_5·b_3_10 + b_1_1·a_5_16
+ b_2_5·a_1_2·b_3_10 + b_2_5·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_1 + a_2_4·b_1_1·b_3_10 + a_2_4·b_4_16 + a_2_4·b_2_5·b_1_12 + a_2_4·b_2_52 + a_3_92 + a_2_42·b_2_5
- a_1_0·a_5_16
- a_3_9·b_3_8 + a_3_5·b_3_10 + a_3_92 + a_1_2·a_5_16 + a_2_42·b_2_5
- a_1_0·b_5_29
- b_3_8·b_3_10 + b_2_52·b_1_12 + a_3_9·b_3_8 + a_1_2·b_5_29 + a_1_2·b_1_12·b_3_8
+ b_4_16·a_1_2·b_1_1 + b_2_5·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_1 + a_2_4·a_1_2·b_3_8
- a_4_11·a_3_9 + a_2_4·b_2_52·a_1_2 + a_2_42·b_3_10
- a_4_11·a_3_5 + a_2_42·b_3_8 + a_2_42·b_2_5·b_1_1
- a_4_11·b_3_8 + b_2_5·a_1_2·b_1_1·b_3_8 + b_2_52·a_1_2·b_1_12 + a_2_4·b_2_5·b_3_8
+ a_2_4·b_2_5·b_1_13 + a_2_42·b_3_8 + a_2_3·c_4_17·a_1_2
- a_4_14·a_3_9 + a_2_4·b_2_5·a_3_9 + a_2_4·b_2_52·a_1_2
- a_4_14·b_3_10 + b_2_52·a_3_9 + a_2_3·c_4_18·a_1_2
- a_4_14·a_3_5 + a_2_42·b_3_10
- a_4_14·b_3_8 + a_4_11·b_3_10 + b_2_53·a_1_2 + a_2_4·b_2_5·b_3_10 + a_2_4·b_2_5·a_3_9
+ a_2_4·b_2_52·a_1_2 + a_2_42·b_3_10
- b_4_16·a_3_9 + b_2_5·a_5_16 + b_2_52·a_3_9 + b_2_52·a_3_5 + a_2_4·b_2_52·a_1_2
- a_2_3·a_5_16
- a_4_11·b_3_10 + b_2_52·a_3_5 + b_2_53·a_1_2 + a_2_4·b_2_5·b_3_10 + a_2_4·a_5_16
+ a_2_4·b_4_16·a_1_2 + a_2_4·b_2_52·a_1_2 + a_2_42·b_2_5·b_1_1
- b_1_12·b_5_29 + b_1_14·b_3_8 + b_4_16·b_3_8 + b_4_16·b_1_13 + b_2_5·b_1_12·b_3_8
+ b_2_52·b_1_13 + b_4_16·a_1_2·b_1_12 + b_2_5·a_1_2·b_1_14 + b_2_52·a_1_2·b_1_12 + a_2_4·b_1_12·b_3_8 + a_2_4·b_2_5·b_3_8 + a_2_42·b_1_13 + a_2_42·b_2_5·b_1_1 + b_2_5·c_4_17·a_1_2
- a_1_2·b_1_1·b_5_29 + a_1_2·b_1_13·b_3_8 + b_4_16·a_3_5 + b_4_16·a_1_2·b_1_12
+ b_2_5·a_1_2·b_1_1·b_3_8 + b_2_52·a_1_2·b_1_12 + a_2_4·b_4_16·b_1_1 + a_2_42·b_3_10 + a_2_42·b_3_8
- b_4_16·b_3_10 + b_2_5·b_5_29 + b_2_5·b_1_12·b_3_8 + b_2_5·b_4_16·b_1_1 + b_2_52·b_3_8
+ b_2_53·b_1_1 + b_4_16·a_3_9 + b_2_5·b_4_16·a_1_2 + b_2_52·a_1_2·b_1_12 + b_2_53·a_1_2 + a_2_4·b_2_5·b_3_10 + a_2_4·b_2_5·b_3_8 + a_2_4·b_2_5·a_3_9 + a_2_4·b_2_52·a_1_2 + a_2_42·b_3_10 + a_2_42·b_2_5·b_1_1 + c_4_18·a_1_2·b_1_12
- a_4_11·b_3_10 + b_2_52·a_3_5 + b_2_53·a_1_2 + a_2_4·b_2_5·b_3_10 + a_2_3·b_5_29
+ a_2_4·b_4_16·a_1_2 + a_2_4·b_2_5·a_3_9 + a_2_42·b_3_8
- a_6_26·b_1_1 + b_4_16·a_1_2·b_1_12 + b_2_5·b_4_16·a_1_2 + b_2_52·a_3_5
+ b_2_52·a_1_2·b_1_12 + a_2_4·b_5_29 + a_2_4·b_1_12·b_3_8 + a_2_4·b_1_15 + a_2_4·b_2_5·b_1_13 + a_2_4·b_2_52·b_1_1 + a_2_4·b_4_16·a_1_2 + a_2_42·b_3_8 + c_4_17·a_1_2·b_1_12 + a_2_4·c_4_17·b_1_1
- a_6_26·a_1_0 + a_2_3·c_4_17·a_1_2
- a_4_11·b_3_10 + b_2_52·a_3_5 + b_2_53·a_1_2 + a_2_4·b_2_5·b_3_10 + a_6_26·a_1_2
+ a_2_4·b_4_16·a_1_2 + a_2_4·b_2_5·a_3_9 + a_2_42·b_1_13 + a_2_42·b_2_5·b_1_1 + a_2_4·c_4_17·a_1_2
- a_4_112 + a_2_42·b_2_5·b_1_12 + a_2_42·b_2_52
- a_4_142 + a_2_4·b_2_5·a_4_14 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_10
- a_4_11·a_4_14 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_10 + a_2_42·b_2_52
- b_4_162 + b_2_5·b_4_16·b_1_12 + b_2_52·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_13
+ b_2_53·a_1_2·b_1_1 + a_2_4·b_2_5·b_1_1·b_3_8 + a_2_4·b_2_52·b_1_12 + a_2_42·b_4_16 + a_2_42·b_2_5·b_1_12 + a_2_42·b_2_52 + c_4_18·b_1_14 + b_2_52·c_4_17
- b_3_10·a_5_16 + a_4_14·b_4_16 + b_2_52·a_4_14 + b_2_53·a_1_2·b_1_1
+ a_2_4·b_2_5·b_1_1·b_3_10 + a_3_9·a_5_16 + a_2_42·b_2_52
- a_3_9·a_5_16 + b_2_5·a_1_2·a_5_16
- b_4_162 + b_2_5·b_4_16·b_1_12 + b_2_52·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_13
+ b_2_53·a_1_2·b_1_1 + a_2_4·b_2_5·b_1_1·b_3_8 + a_2_4·b_2_52·b_1_12 + a_3_5·a_5_16 + c_4_18·b_1_14 + b_2_52·c_4_17
- b_3_8·a_5_16 + a_3_9·b_5_29 + a_4_14·b_4_16 + a_4_11·b_4_16 + b_2_52·a_4_11
+ b_2_53·a_1_2·b_1_1 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_42·c_4_18 + a_2_4·c_4_18·a_1_22
- b_3_8·a_5_16 + a_4_11·b_4_16 + b_2_5·a_1_2·b_5_29 + b_2_5·a_1_2·b_1_12·b_3_8
+ b_2_5·b_4_16·a_1_2·b_1_1 + b_2_52·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_13 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_4·b_2_5·b_1_1·b_3_8 + a_2_4·b_2_5·b_4_16 + a_3_9·a_5_16 + a_4_142 + a_2_42·b_2_52
- b_4_162 + b_2_5·b_4_16·b_1_12 + b_3_8·a_5_16 + a_3_5·b_5_29 + b_4_16·a_1_2·b_3_8
+ b_2_5·a_1_2·b_1_15 + b_2_52·a_1_2·b_1_13 + a_2_4·b_1_13·b_3_8 + a_2_4·b_4_16·b_1_12 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_4·b_2_5·b_1_1·b_3_8 + a_3_9·a_5_16 + a_4_142 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_10 + a_2_42·b_1_1·b_3_8 + a_2_42·b_2_5·b_1_12 + c_4_18·b_1_14 + b_2_52·c_4_17 + c_4_17·a_1_2·a_3_9
- b_4_162 + b_2_5·b_4_16·b_1_12 + b_3_8·a_5_16 + b_2_5·b_4_16·a_1_2·b_1_1
+ b_2_52·a_1_2·b_3_8 + a_2_4·b_1_1·b_5_29 + a_2_4·b_1_13·b_3_8 + a_2_4·b_4_16·b_1_12 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_4·b_2_5·b_1_1·b_3_8 + a_3_9·a_5_16 + a_4_142 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_10 + a_2_42·b_1_1·b_3_8 + a_2_42·b_2_52 + c_4_18·b_1_14 + b_2_52·c_4_17 + c_4_17·a_1_2·a_3_9
- b_3_10·b_5_29 + b_4_162 + b_2_5·b_1_1·b_5_29 + b_2_5·b_1_13·b_3_8
+ b_2_52·b_1_1·b_3_10 + b_2_52·b_1_1·b_3_8 + b_2_52·b_1_14 + b_2_52·b_4_16 + b_4_16·a_1_2·b_3_8 + a_4_14·b_4_16 + b_2_5·b_4_16·a_1_2·b_1_1 + b_2_52·a_1_2·b_1_13 + b_2_52·a_4_11 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_4·b_2_5·b_1_1·b_3_8 + a_2_4·b_2_5·b_4_16 + a_3_9·a_5_16 + a_4_142 + a_2_4·a_1_2·b_5_29 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_8 + c_4_18·b_1_14 + b_2_52·c_4_17 + c_4_18·a_1_2·b_3_8 + c_4_18·a_1_2·b_1_13 + a_2_42·c_4_18 + a_2_4·c_4_18·a_1_22
- b_3_8·b_5_29 + b_4_16·b_1_1·b_3_8 + b_2_5·b_1_16 + b_2_5·b_4_16·b_1_12
+ b_2_52·b_1_1·b_3_8 + b_2_52·b_1_14 + a_1_2·b_1_14·b_3_8 + b_2_52·a_1_2·b_3_8 + a_2_4·b_2_5·b_1_14 + a_2_4·b_2_52·b_1_12 + c_4_17·a_1_2·b_3_10 + c_4_17·a_1_2·a_3_9 + a_2_4·c_4_17·a_1_22
- a_4_14·b_4_16 + b_2_5·a_6_26 + b_2_5·b_4_16·a_1_2·b_1_1 + b_2_52·a_4_11
+ a_2_4·b_2_5·b_1_14 + a_2_4·b_2_5·b_4_16 + a_2_4·b_2_52·b_1_12 + a_4_142 + a_2_4·b_2_5·a_4_11 + a_2_42·b_1_1·b_3_10 + a_2_42·b_2_52 + b_2_5·c_4_17·a_1_2·b_1_1 + a_2_4·b_2_5·c_4_17 + a_2_42·c_4_18 + a_2_4·c_4_18·a_1_22
- a_2_3·a_6_26
- b_3_10·b_5_29 + b_2_5·b_1_1·b_5_29 + b_2_5·b_1_13·b_3_8 + b_2_5·b_4_16·b_1_12
+ b_2_52·b_1_1·b_3_10 + b_2_52·b_1_1·b_3_8 + b_2_52·b_1_14 + b_2_52·b_4_16 + b_4_16·a_1_2·b_3_8 + a_4_14·b_4_16 + b_2_5·b_4_16·a_1_2·b_1_1 + b_2_52·a_1_2·b_3_8 + b_2_52·a_4_11 + b_2_53·a_1_2·b_1_1 + a_2_4·b_2_5·b_1_1·b_3_10 + a_2_4·b_2_5·b_4_16 + a_2_4·b_2_52·b_1_12 + a_2_4·a_6_26 + a_2_42·b_1_1·b_3_10 + a_2_42·b_1_14 + a_2_42·b_2_52 + c_4_18·a_1_2·b_3_8 + c_4_18·a_1_2·b_1_13 + a_2_42·c_4_18 + a_2_4·c_4_17·a_1_22
- a_4_14·a_5_16 + a_2_4·b_2_5·a_5_16 + a_2_4·b_2_5·b_4_16·a_1_2 + a_2_4·b_2_53·a_1_2
+ a_2_42·b_2_52·b_1_1
- b_4_16·a_5_16 + b_2_52·a_5_16 + b_2_53·a_3_9 + b_2_53·a_3_5
+ a_2_4·b_2_5·b_4_16·a_1_2 + a_2_42·b_2_5·b_3_8 + a_2_42·b_2_52·b_1_1 + c_4_18·a_1_2·b_1_1·b_3_8 + b_2_5·c_4_17·a_3_9 + a_2_4·c_4_18·b_1_13
- a_4_14·b_5_29 + b_2_52·a_5_16 + b_2_52·a_1_2·b_1_1·b_3_8 + b_2_52·b_4_16·a_1_2
+ b_2_53·a_3_9 + b_2_54·a_1_2 + a_2_4·b_2_5·b_5_29 + a_2_4·b_2_5·b_1_12·b_3_8 + a_2_4·b_2_5·b_4_16·b_1_1 + a_2_4·b_2_52·b_3_10 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_13 + a_2_4·b_2_53·b_1_1 + a_4_14·a_5_16 + a_4_11·a_5_16 + a_2_4·b_2_53·a_1_2 + a_2_42·b_2_5·b_3_10 + a_2_42·b_2_52·b_1_1 + a_2_4·c_4_18·a_3_5
- a_4_14·b_5_29 + a_4_11·b_5_29 + b_2_5·a_1_2·b_1_13·b_3_8
+ b_2_5·b_4_16·a_1_2·b_1_12 + b_2_52·a_5_16 + b_2_52·a_1_2·b_1_14 + b_2_53·a_3_9 + b_2_53·a_3_5 + b_2_54·a_1_2 + a_2_4·b_4_16·b_3_8 + a_2_4·b_2_5·b_1_12·b_3_8 + a_2_4·b_2_5·b_1_15 + a_2_4·b_2_52·b_3_10 + a_4_14·a_5_16 + a_4_11·a_5_16 + a_2_42·b_1_12·b_3_8 + a_2_42·b_2_5·b_3_10 + a_2_42·b_2_5·b_3_8 + a_2_42·b_2_5·b_1_13 + a_2_42·b_2_52·b_1_1 + a_2_4·c_4_18·a_3_5 + a_2_4·c_4_17·a_3_9 + a_2_4·b_2_5·c_4_17·a_1_2
- b_4_16·b_5_29 + b_4_16·b_1_12·b_3_8 + b_2_5·b_4_16·b_1_13 + b_2_52·b_4_16·b_1_1
+ a_4_14·b_5_29 + b_2_52·a_5_16 + b_2_52·a_1_2·b_1_1·b_3_8 + b_2_52·a_1_2·b_1_14 + b_2_53·a_3_9 + b_2_53·a_3_5 + b_2_54·a_1_2 + a_2_4·b_4_16·b_3_8 + a_2_4·b_2_5·b_1_12·b_3_8 + a_2_4·b_2_52·b_3_10 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_13 + a_2_4·b_2_53·b_1_1 + a_4_14·a_5_16 + a_2_4·b_2_5·b_4_16·a_1_2 + a_2_4·b_2_53·a_1_2 + a_2_42·b_2_5·b_3_8 + a_2_42·b_2_5·b_1_13 + a_2_42·b_2_52·b_1_1 + c_4_18·b_1_12·b_3_8 + c_4_18·b_1_15 + b_2_5·c_4_17·b_3_10 + b_2_52·c_4_17·b_1_1 + c_4_18·a_1_2·b_1_14 + b_2_5·c_4_17·a_3_9 + a_2_4·c_4_18·a_3_5
- a_4_11·a_5_16 + a_2_4·b_2_5·b_4_16·a_1_2 + a_2_4·b_2_53·a_1_2 + a_2_42·b_5_29
+ a_2_42·b_1_12·b_3_8 + a_2_42·b_4_16·b_1_1 + a_2_42·b_2_5·b_3_10
- a_6_26·a_3_9 + a_2_4·b_2_53·a_1_2 + a_2_42·b_2_5·b_3_8 + a_2_42·b_2_5·b_1_13
+ a_2_42·b_2_52·b_1_1 + a_2_4·c_4_17·a_3_9 + a_2_4·b_2_5·c_4_17·a_1_2
- a_6_26·b_3_10 + a_4_14·b_5_29 + b_2_5·b_4_16·a_3_5 + b_2_52·a_1_2·b_1_1·b_3_8
+ b_2_52·b_4_16·a_1_2 + a_2_4·b_2_5·b_1_12·b_3_8 + a_2_4·b_2_5·b_4_16·b_1_1 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_13 + a_4_14·a_5_16 + a_4_11·a_5_16 + a_2_42·b_4_16·b_1_1 + a_2_42·b_2_5·b_3_10 + b_2_5·c_4_17·a_3_5 + a_2_4·c_4_17·b_3_10 + a_2_4·b_2_5·c_4_17·b_1_1 + a_2_4·b_2_5·c_4_17·a_1_2
- a_6_26·a_3_5 + a_2_42·b_1_12·b_3_8 + a_2_42·b_1_15 + a_2_42·b_2_5·b_1_13
+ a_2_42·b_2_52·b_1_1 + a_2_4·c_4_17·a_3_5 + a_2_42·c_4_17·b_1_1
- a_6_26·b_3_8 + b_4_16·a_1_2·b_1_1·b_3_8 + b_2_5·b_4_16·a_3_5
+ b_2_52·a_1_2·b_1_1·b_3_8 + b_2_53·a_1_2·b_1_12 + a_2_4·b_1_14·b_3_8 + a_2_4·b_4_16·b_3_8 + a_2_4·b_2_5·b_1_12·b_3_8 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_13 + a_4_11·a_5_16 + a_2_4·b_2_5·b_4_16·a_1_2 + a_2_4·b_2_53·a_1_2 + a_2_42·b_2_5·b_3_8 + c_4_17·a_1_2·b_1_1·b_3_8 + a_2_4·c_4_17·b_3_8 + a_2_4·c_4_17·a_3_9 + a_2_4·b_2_5·c_4_17·a_1_2
- a_5_162 + a_2_4·b_2_52·a_4_14 + a_2_4·b_2_52·a_4_11 + a_2_42·b_2_5·b_1_1·b_3_10
+ a_2_42·b_2_5·b_4_16 + a_2_42·b_2_52·b_1_12 + a_2_4·c_4_17·a_1_2·b_3_8 + a_2_4·a_4_14·c_4_17 + a_2_4·a_4_11·c_4_17 + a_2_42·c_4_18·b_1_12
- b_5_292 + b_2_5·b_1_18 + b_2_5·b_4_16·b_1_14 + b_2_52·b_4_16·b_1_12
+ b_2_53·b_1_14 + b_2_54·b_1_12 + a_1_2·b_1_16·b_3_8 + b_2_5·b_4_16·a_1_2·b_3_8 + b_2_52·a_1_2·b_1_15 + b_2_53·a_1_2·b_3_8 + b_2_54·a_1_2·b_1_1 + a_2_4·b_2_5·b_1_13·b_3_8 + a_2_4·b_2_52·b_1_1·b_3_8 + a_2_4·b_2_52·b_1_14 + a_2_4·b_2_53·b_1_12 + a_2_42·b_4_16·b_1_12 + a_2_42·b_2_5·b_1_1·b_3_10 + a_2_42·b_2_5·b_4_16 + a_2_42·b_2_52·b_1_12 + c_4_18·b_1_16 + b_2_5·c_4_18·b_1_14 + b_2_52·c_4_17·b_1_12 + b_2_53·c_4_17 + c_4_18·a_1_2·b_1_12·b_3_8 + b_2_5·a_4_11·c_4_17 + b_2_52·c_4_17·a_1_2·b_1_1 + a_2_4·c_4_17·b_1_1·b_3_10 + a_2_4·b_2_52·c_4_17 + c_4_17·a_1_2·a_5_16 + a_2_4·a_4_14·c_4_17 + a_2_42·b_2_5·c_4_17 + c_4_17·c_4_18·a_1_22
- a_4_14·a_6_26 + a_2_4·b_2_52·a_4_11 + a_2_42·b_2_5·b_1_1·b_3_8
+ a_2_42·b_2_52·b_1_12 + a_2_4·c_4_17·a_1_2·b_3_8 + a_2_4·a_4_14·c_4_17 + a_2_4·a_4_11·c_4_17
- a_5_16·b_5_29 + b_2_5·b_4_16·a_1_2·b_1_13 + b_2_52·a_1_2·b_1_15 + b_2_52·a_6_26
+ b_2_53·a_1_2·b_3_8 + a_2_4·b_4_16·b_1_1·b_3_8 + a_2_4·b_2_5·b_1_1·b_5_29 + a_2_4·b_2_5·b_4_16·b_1_12 + a_2_4·b_2_52·b_1_1·b_3_8 + a_2_4·b_2_52·b_1_14 + a_2_4·b_2_52·b_4_16 + a_2_4·b_2_53·b_1_12 + a_2_4·b_2_5·a_1_2·b_5_29 + a_2_4·b_2_5·a_6_26 + a_2_4·b_2_52·a_4_14 + a_2_4·b_2_52·a_4_11 + a_2_42·b_1_1·b_5_29 + a_2_42·b_1_13·b_3_8 + a_2_42·b_4_16·b_1_12 + a_2_42·b_2_5·b_1_14 + a_2_42·b_2_5·b_4_16 + a_2_42·b_2_52·b_1_12 + a_2_42·b_2_53 + c_4_18·a_1_2·b_1_12·b_3_8 + b_2_5·c_4_18·a_1_2·b_1_13 + b_2_5·a_4_14·c_4_17 + b_2_5·a_4_11·c_4_17 + a_2_4·c_4_18·b_1_1·b_3_8 + a_2_4·c_4_18·b_1_14 + a_2_4·c_4_17·b_1_1·b_3_10 + a_2_4·b_2_52·c_4_17 + c_4_17·a_1_2·a_5_16 + a_2_4·a_4_14·c_4_17 + a_2_42·c_4_18·b_1_12 + a_2_42·b_2_5·c_4_17
- a_4_11·a_6_26 + a_2_42·b_1_13·b_3_8 + a_2_42·b_2_5·b_1_1·b_3_10
+ a_2_42·b_2_52·b_1_12 + a_2_42·b_2_53 + a_2_4·c_4_17·a_1_2·b_3_8 + a_2_4·a_4_11·c_4_17 + a_2_42·b_2_5·c_4_17
- a_5_16·b_5_29 + b_4_16·a_6_26 + b_2_52·a_1_2·b_5_29 + b_2_52·a_1_2·b_1_12·b_3_8
+ b_2_52·a_1_2·b_1_15 + b_2_52·a_6_26 + b_2_52·b_4_16·a_1_2·b_1_1 + b_2_54·a_1_2·b_1_1 + a_2_4·b_4_16·b_1_1·b_3_8 + a_2_4·b_4_16·b_1_14 + a_2_4·b_2_5·b_1_1·b_5_29 + a_2_4·b_2_5·b_4_16·b_1_12 + a_2_4·b_2_52·b_1_1·b_3_8 + a_2_4·b_2_52·b_1_14 + a_2_4·b_2_53·b_1_12 + a_2_4·b_2_5·a_1_2·b_5_29 + a_2_4·b_2_52·a_4_14 + a_2_42·b_1_1·b_5_29 + a_2_42·b_1_13·b_3_8 + a_2_42·b_4_16·b_1_12 + a_2_42·b_2_5·b_1_1·b_3_10 + c_4_18·a_1_2·b_1_12·b_3_8 + c_4_18·a_1_2·b_1_15 + b_4_16·c_4_17·a_1_2·b_1_1 + b_2_5·a_4_11·c_4_17 + b_2_52·c_4_17·a_1_2·b_1_1 + a_2_4·c_4_17·b_1_1·b_3_10 + a_2_4·b_4_16·c_4_17 + c_4_17·a_1_2·a_5_16 + a_2_4·c_4_17·a_1_2·b_3_8 + a_2_4·a_4_11·c_4_17 + a_2_42·c_4_18·b_1_12 + a_2_42·b_2_5·c_4_17
- a_6_26·b_5_29 + b_4_16·a_1_2·b_1_13·b_3_8 + b_2_5·b_4_16·a_1_2·b_1_1·b_3_8
+ b_2_5·b_4_16·a_1_2·b_1_14 + b_2_52·a_1_2·b_1_13·b_3_8 + b_2_52·b_4_16·a_1_2·b_1_12 + b_2_53·a_1_2·b_1_1·b_3_8 + b_2_53·a_1_2·b_1_14 + b_2_54·a_3_5 + a_2_4·b_1_16·b_3_8 + a_2_4·b_4_16·b_1_15 + a_2_4·b_2_5·b_4_16·b_3_8 + a_2_4·b_2_5·b_4_16·b_1_13 + a_2_4·b_2_52·b_4_16·b_1_1 + a_2_4·b_2_52·a_5_16 + a_2_4·b_2_53·a_3_9 + a_2_42·b_1_14·b_3_8 + a_2_42·b_4_16·b_3_8 + a_2_42·b_4_16·b_1_13 + a_2_42·b_2_5·b_5_29 + a_2_42·b_2_5·b_1_12·b_3_8 + a_2_42·b_2_5·b_1_15 + a_2_42·b_2_53·b_1_1 + c_4_18·a_1_2·b_1_13·b_3_8 + c_4_18·a_1_2·b_1_16 + c_4_17·a_1_2·b_1_13·b_3_8 + b_4_16·c_4_17·a_3_5 + b_4_16·c_4_17·a_1_2·b_1_12 + b_2_5·c_4_18·a_1_2·b_1_1·b_3_8 + b_2_5·c_4_18·a_1_2·b_1_14 + b_2_5·c_4_17·a_1_2·b_1_1·b_3_8 + b_2_52·c_4_17·a_3_9 + b_2_52·c_4_17·a_3_5 + b_2_53·c_4_17·a_1_2 + a_2_4·c_4_18·b_1_15 + a_2_4·c_4_17·b_5_29 + a_2_4·b_4_16·c_4_17·b_1_1 + a_2_4·b_2_5·c_4_18·b_1_13 + a_2_42·c_4_18·b_1_13 + a_2_42·c_4_17·b_3_8 + a_2_42·b_2_5·c_4_17·b_1_1 + a_2_3·c_4_17·c_4_18·a_1_2
- a_6_26·a_5_16 + a_2_4·b_2_52·b_4_16·a_1_2 + a_2_4·b_2_54·a_1_2
+ a_2_42·b_4_16·b_3_8 + a_2_42·b_4_16·b_1_13 + a_2_42·b_2_5·b_1_12·b_3_8 + a_2_42·b_2_5·b_1_15 + a_2_42·b_2_5·b_4_16·b_1_1 + a_2_42·b_2_52·b_3_8 + a_2_4·c_4_17·a_5_16 + a_2_4·b_4_16·c_4_17·a_1_2 + a_2_4·b_2_52·c_4_17·a_1_2 + a_2_42·b_2_5·c_4_17·b_1_1
- a_6_262 + a_2_42·b_1_18 + a_2_42·b_2_5·b_4_16·b_1_12
+ a_2_42·b_2_52·b_1_14 + a_2_42·b_2_52·b_4_16 + a_2_42·b_2_53·b_1_12 + a_2_42·b_2_54 + a_2_4·b_2_5·a_4_14·c_4_17 + a_2_4·b_2_5·a_4_11·c_4_17 + a_2_42·c_4_18·b_1_14 + a_2_42·c_4_17·b_1_1·b_3_10 + a_2_42·b_2_5·c_4_18·b_1_12 + a_2_42·b_2_52·c_4_17 + a_2_42·c_4_172
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_17, a Duflot regular element of degree 4
- c_4_18, a Duflot regular element of degree 4
- b_1_14 + b_2_5·b_1_12 + b_2_52, an element of degree 4
- b_3_8 + b_2_5·b_1_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 8, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_3_10 → 0, an element of degree 3
- a_4_11 → 0, an element of degree 4
- a_4_14 → 0, an element of degree 4
- b_4_16 → 0, an element of degree 4
- c_4_17 → c_1_04, an element of degree 4
- c_4_18 → c_1_14, an element of degree 4
- a_5_16 → 0, an element of degree 5
- b_5_29 → 0, an element of degree 5
- a_6_26 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- b_3_8 → c_1_22·c_1_3, an element of degree 3
- b_3_10 → c_1_33, an element of degree 3
- a_4_11 → 0, an element of degree 4
- a_4_14 → 0, an element of degree 4
- b_4_16 → c_1_12·c_1_22 + c_1_02·c_1_32, an element of degree 4
- c_4_17 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_18 → c_1_12·c_1_32 + c_1_14, an element of degree 4
- a_5_16 → 0, an element of degree 5
- b_5_29 → c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_12·c_1_22·c_1_3
+ c_1_12·c_1_23 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32, an element of degree 5
- a_6_26 → 0, an element of degree 6
|