Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 557 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 − 2·t3 − t2 − t − 1) |
| (t + 1)2 · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- a_3_0, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- b_3_10, an element of degree 3
- a_4_9, a nilpotent element of degree 4
- b_4_14, an element of degree 4
- c_4_16, a Duflot regular element of degree 4
- c_4_17, a Duflot regular element of degree 4
- a_5_17, a nilpotent element of degree 5
Ring relations
There are 65 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_2·b_1_12
- a_1_22·b_1_1
- a_2_3·a_1_0
- b_2_4·a_1_0 + a_2_3·a_1_2
- b_2_4·a_1_2 + a_2_3·b_1_1
- a_2_32 + c_2_5·a_1_22
- b_2_42 + a_2_3·a_1_2·b_1_1 + c_2_5·b_1_12
- a_2_3·b_2_4 + c_2_5·a_1_2·b_1_1
- a_1_0·a_3_0 + a_2_3·a_1_2·b_1_1
- a_1_2·a_3_0
- a_1_0·a_3_3 + a_2_3·a_1_2·b_1_1
- b_1_1·a_3_0 + a_1_2·a_3_3
- a_2_3·b_1_12 + a_1_0·a_3_5
- b_1_1·a_3_0 + a_1_2·a_3_5
- b_1_1·a_3_0 + a_1_0·b_3_10 + a_2_3·b_1_12
- b_1_1·a_3_5 + a_1_2·b_3_10
- a_2_3·a_3_0
- b_2_4·a_3_0 + a_2_3·a_3_3
- b_2_4·a_3_0 + a_2_3·a_3_5
- a_1_2·b_1_1·b_3_10
- b_2_4·a_3_5 + a_2_3·b_3_10
- a_4_9·b_1_1 + b_2_4·a_3_3 + b_2_4·a_3_0 + a_1_22·b_3_10
- a_4_9·a_1_0
- b_2_4·a_3_0 + a_4_9·a_1_2
- b_1_15 + b_4_14·b_1_1 + b_2_4·b_3_10 + b_2_4·a_3_5 + b_2_4·a_3_3 + b_2_4·a_3_0
+ c_2_5·b_1_13
- b_4_14·a_1_0 + b_2_4·a_3_0
- b_4_14·a_1_2 + b_2_4·a_3_5 + a_1_22·b_3_10
- a_3_02
- a_3_0·a_3_3
- a_3_3·a_3_5 + a_3_32 + a_3_0·a_3_5
- a_3_52 + a_3_32
- a_3_0·b_3_10 + a_3_3·a_3_5
- a_2_3·b_1_1·b_3_10 + a_3_3·a_3_5 + a_3_32
- a_3_5·b_3_10 + a_3_3·a_3_5 + a_3_32 + a_2_3·a_1_2·b_3_10 + c_4_16·a_1_2·b_1_1
- a_3_32 + a_2_3·a_1_2·b_3_10 + c_4_16·a_1_22
- b_2_4·a_4_9 + a_2_3·a_1_2·b_3_10 + c_2_5·b_1_1·a_3_3 + c_2_5·a_1_2·a_3_3
+ c_2_5·a_1_0·a_3_5
- a_2_3·a_4_9 + c_2_5·a_1_2·a_3_3 + a_2_3·c_2_5·a_1_2·b_1_1
- b_3_102 + b_1_13·b_3_10 + b_4_14·b_1_12 + b_2_4·b_1_1·a_3_3 + c_4_16·b_1_12
+ c_2_5·b_1_14 + c_4_17·a_1_22
- b_2_4·b_1_14 + b_2_4·b_4_14 + a_3_3·a_3_5 + a_3_32 + c_2_5·b_1_1·b_3_10
+ b_2_4·c_2_5·b_1_12 + c_2_5·b_1_1·a_3_3 + c_2_5·a_1_2·b_3_10 + c_2_5·a_1_2·a_3_3 + c_2_5·a_1_0·a_3_5
- a_2_3·b_4_14 + a_2_3·a_1_2·b_3_10 + c_2_5·a_1_2·b_3_10 + c_2_5·a_1_0·a_3_5
+ a_2_3·c_2_5·a_1_2·b_1_1
- a_3_3·b_3_10 + b_1_1·a_5_17 + b_2_4·b_1_1·a_3_3 + a_3_32 + c_4_17·a_1_2·b_1_1
+ c_2_5·b_1_1·a_3_3 + c_2_5·a_1_2·b_3_10
- a_3_3·a_3_5 + a_3_32 + a_1_0·a_5_17 + c_2_5·a_1_0·a_3_5 + a_2_3·c_2_5·a_1_2·b_1_1
- a_3_32 + a_1_2·a_5_17 + c_4_17·a_1_22
- a_4_9·a_3_3 + a_2_3·c_4_16·a_1_2
- a_4_9·a_3_0
- a_4_9·a_3_5 + a_2_3·c_4_16·a_1_2
- b_1_14·a_3_3 + b_4_14·a_3_3 + a_4_9·b_3_10 + c_2_5·b_1_12·a_3_3 + a_2_3·c_4_16·a_1_2
- b_4_14·a_3_0 + a_2_3·c_4_16·a_1_2
- b_1_14·b_3_10 + b_4_14·b_3_10 + b_2_4·b_1_12·b_3_10 + b_2_4·b_4_14·b_1_1
+ a_4_9·b_3_10 + c_2_5·b_1_12·b_3_10 + b_2_4·c_4_16·b_1_1 + b_2_4·c_2_5·b_1_13 + c_2_5·b_1_12·a_3_3 + a_2_3·c_4_16·b_1_1 + c_2_5·a_1_22·b_3_10 + a_2_3·c_4_17·a_1_2
- b_4_14·a_3_5 + a_2_3·c_4_16·b_1_1
- a_4_9·b_3_10 + b_2_4·a_5_17 + c_2_5·b_1_12·a_3_3 + b_2_4·c_2_5·a_3_3
+ a_2_3·c_4_17·b_1_1 + a_2_3·c_2_5·b_3_10
- a_2_3·a_5_17 + c_2_5·a_1_22·b_3_10 + a_2_3·c_4_17·a_1_2 + a_2_3·c_4_16·a_1_2
- a_4_92 + a_2_3·c_2_5·a_1_2·b_3_10 + c_2_5·c_4_16·a_1_22
- b_4_14·b_1_14 + b_4_142 + b_2_4·b_1_13·b_3_10 + b_2_4·b_1_13·a_3_3 + a_3_3·a_5_17
+ c_2_5·b_1_13·b_3_10 + b_2_4·c_2_5·b_1_1·b_3_10 + c_4_17·a_1_2·a_3_3 + c_4_16·a_1_2·a_3_3 + c_4_16·a_1_0·a_3_5 + a_2_3·c_2_5·a_1_2·b_3_10 + c_2_5·c_4_16·b_1_12 + c_2_52·b_1_14 + c_2_5·c_4_17·a_1_22
- b_4_14·b_1_14 + b_4_142 + b_2_4·b_1_13·b_3_10 + b_2_4·b_1_13·a_3_3 + a_3_0·a_5_17
+ c_2_5·b_1_13·b_3_10 + b_2_4·c_2_5·b_1_1·b_3_10 + c_4_16·a_1_0·a_3_5 + a_2_3·c_4_16·a_1_2·b_1_1 + a_2_3·c_2_5·a_1_2·b_3_10 + c_2_5·c_4_16·b_1_12 + c_2_52·b_1_14 + c_2_5·c_4_17·a_1_22
- b_3_10·a_5_17 + b_1_13·a_5_17 + b_4_14·b_1_1·a_3_3 + a_4_9·b_4_14 + b_2_4·b_1_1·a_5_17
+ c_4_17·a_1_2·b_3_10 + c_4_16·b_1_1·a_3_3 + c_2_5·b_1_13·a_3_3 + c_4_17·a_1_0·a_3_5 + c_4_16·a_1_2·a_3_3 + c_4_16·a_1_0·a_3_5 + a_2_3·c_4_17·a_1_2·b_1_1 + a_2_3·c_4_16·a_1_2·b_1_1 + c_2_5·c_4_16·a_1_2·b_1_1 + c_2_5·c_4_16·a_1_22
- b_4_14·b_1_14 + b_4_142 + b_2_4·b_1_13·b_3_10 + b_2_4·b_1_13·a_3_3 + a_3_5·a_5_17
+ c_2_5·b_1_13·b_3_10 + b_2_4·c_2_5·b_1_1·b_3_10 + c_4_17·a_1_2·a_3_3 + c_4_16·a_1_2·a_3_3 + a_2_3·c_4_17·a_1_2·b_1_1 + a_2_3·c_2_5·a_1_2·b_3_10 + c_2_5·c_4_16·b_1_12 + c_2_52·b_1_14 + c_2_5·c_4_17·a_1_22
- a_4_9·b_4_14 + b_2_4·b_1_13·a_3_3 + c_2_5·b_1_1·a_5_17 + c_2_5·c_4_17·a_1_2·b_1_1
+ c_2_52·b_1_1·a_3_3 + c_2_52·a_1_2·b_3_10
- b_4_14·b_1_14 + b_4_142 + b_2_4·b_1_13·b_3_10 + b_2_4·b_1_13·a_3_3
+ c_2_5·b_1_13·b_3_10 + b_2_4·c_2_5·b_1_1·b_3_10 + c_2_5·a_1_0·a_5_17 + a_2_3·c_4_16·a_1_2·b_1_1 + a_2_3·c_2_5·a_1_2·b_3_10 + c_2_5·c_4_16·b_1_12 + c_2_52·b_1_14 + c_2_5·c_4_17·a_1_22 + c_2_52·a_1_0·a_3_5 + a_2_3·c_2_52·a_1_2·b_1_1
- a_4_9·a_5_17 + a_2_3·c_4_17·a_3_3 + a_2_3·c_4_16·a_3_3
- b_1_14·a_5_17 + b_4_14·a_5_17 + b_2_4·b_1_12·a_5_17 + b_2_4·b_4_14·a_3_3
+ c_2_5·b_4_14·a_3_3 + b_2_4·c_4_16·a_3_3 + b_2_4·c_2_5·b_1_12·a_3_3 + a_2_3·c_4_17·b_3_10 + c_4_17·a_1_22·b_3_10 + c_4_16·a_1_22·b_3_10 + a_2_3·c_4_16·a_3_3 + a_2_3·c_2_5·c_4_16·b_1_1
- a_5_172 + c_4_172·a_1_22 + c_4_162·a_1_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_4_16, a Duflot regular element of degree 4
- c_4_17, a Duflot regular element of degree 4
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_5 → c_1_12, an element of degree 2
- a_3_0 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_3_10 → 0, an element of degree 3
- a_4_9 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_16 → c_1_04, an element of degree 4
- c_4_17 → c_1_24 + c_1_04, an element of degree 4
- a_5_17 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_1·c_1_3, an element of degree 2
- c_2_5 → c_1_12, an element of degree 2
- a_3_0 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_3_10 → c_1_33 + c_1_1·c_1_32 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- a_4_9 → 0, an element of degree 4
- b_4_14 → c_1_34 + c_1_1·c_1_33 + c_1_0·c_1_1·c_1_32 + c_1_02·c_1_1·c_1_3, an element of degree 4
- c_4_16 → c_1_34 + c_1_0·c_1_33 + c_1_0·c_1_1·c_1_32 + c_1_02·c_1_1·c_1_3 + c_1_04, an element of degree 4
- c_4_17 → c_1_22·c_1_32 + c_1_24 + c_1_0·c_1_1·c_1_32 + c_1_02·c_1_32
+ c_1_02·c_1_1·c_1_3 + c_1_04, an element of degree 4
- a_5_17 → 0, an element of degree 5
|