Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 558 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
1 |
| (t + 1) · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_7, a nilpotent element of degree 3
- a_3_9, a nilpotent element of degree 3
- a_4_10, a nilpotent element of degree 4
- b_4_13, an element of degree 4
- c_4_14, a Duflot regular element of degree 4
- c_4_15, a Duflot regular element of degree 4
- a_5_18, a nilpotent element of degree 5
Ring relations
There are 53 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_2_3·a_1_0
- b_2_4·a_1_0 + a_2_3·a_1_2
- b_2_4·a_1_2 + a_2_3·b_1_1
- b_2_5·a_1_2 + b_2_5·a_1_0
- a_2_32
- a_2_3·b_2_4
- b_2_5·b_1_12 + b_2_42 + a_2_3·a_1_2·b_1_1
- a_1_0·a_3_4 + a_2_3·a_1_2·b_1_1
- a_1_2·a_3_4
- a_1_0·a_3_7
- b_1_1·a_3_4 + a_2_3·b_1_12 + a_1_2·a_3_7
- a_2_3·b_2_5 + a_1_0·a_3_9
- a_2_3·b_2_5 + a_1_2·a_3_9
- a_2_3·a_3_4
- b_2_4·a_3_4 + a_2_3·a_3_7
- b_1_12·a_3_9 + b_2_5·a_3_7 + b_2_52·a_1_0
- a_2_3·a_3_9
- a_4_10·b_1_1 + b_2_5·a_3_7 + b_2_52·a_1_0 + b_2_4·a_3_7 + b_2_4·a_3_4 + a_2_3·b_1_13
- a_4_10·a_1_0
- b_2_4·a_3_4 + a_4_10·a_1_2
- b_4_13·a_1_0 + b_2_5·a_3_4 + b_2_52·a_1_0
- b_4_13·a_1_2 + b_2_5·a_3_4 + b_2_52·a_1_0
- a_3_42
- a_3_4·a_3_7 + a_2_3·b_1_1·a_3_7
- a_3_92
- a_3_7·a_3_9 + b_2_5·a_1_0·a_3_9
- a_2_3·b_1_14 + a_3_72 + a_1_2·b_1_12·a_3_7 + c_4_14·a_1_22
- b_2_5·b_1_1·a_3_9 + b_2_5·a_4_10 + b_2_4·b_1_1·a_3_9 + a_3_7·a_3_9 + a_3_4·a_3_9
- b_2_5·b_1_1·a_3_7 + b_2_4·b_1_1·a_3_9 + b_2_4·a_4_10
- a_2_3·a_4_10
- a_2_3·b_4_13 + a_3_7·a_3_9 + a_3_4·a_3_9
- a_3_7·a_3_9 + a_3_4·a_3_9 + a_1_0·a_5_18
- a_2_3·b_1_14 + a_3_7·a_3_9 + a_3_72 + a_3_4·a_3_9 + a_3_4·a_3_7 + a_1_2·a_5_18
- a_4_10·a_3_9
- a_4_10·a_3_7 + a_2_3·c_4_14·a_1_2
- a_4_10·a_3_4
- b_4_13·a_3_4 + b_2_52·a_3_4 + b_2_53·a_1_0 + b_2_5·c_4_14·a_1_0
- b_1_12·a_5_18 + b_1_14·a_3_7 + b_4_13·a_3_7 + b_2_52·a_3_4 + b_2_53·a_1_0
+ b_2_4·b_1_12·a_3_7 + a_2_3·b_1_12·a_3_7 + c_4_14·a_1_2·b_1_12
- b_4_13·a_3_9 + b_2_5·a_5_18 + b_2_4·b_2_5·a_3_7 + b_2_42·a_3_7 + b_2_5·c_4_14·a_1_0
- a_2_3·a_5_18 + a_2_3·b_1_12·a_3_7 + a_2_3·c_4_14·a_1_2
- a_4_102
- b_4_132 + b_2_4·b_2_53 + b_2_44 + b_2_52·c_4_14
- a_3_9·a_5_18 + c_4_14·a_1_0·a_3_9 + a_2_3·c_4_15·a_1_2·b_1_1
+ a_2_3·c_4_14·a_1_2·b_1_1
- a_3_7·a_5_18 + b_1_12·a_3_72 + b_2_5·a_1_0·a_5_18 + a_2_3·b_1_13·a_3_7
+ c_4_14·a_1_2·a_3_7 + a_2_3·c_4_14·a_1_2·b_1_1
- a_4_10·b_4_13 + b_2_5·b_1_1·a_5_18 + b_2_4·b_1_1·a_5_18 + b_2_4·b_1_13·a_3_7
+ b_2_42·b_1_1·a_3_9 + b_2_42·a_4_10 + a_2_3·c_4_14·b_1_12 + c_4_14·a_1_0·a_3_9
- a_3_7·a_5_18 + a_3_4·a_5_18 + b_1_12·a_3_72 + c_4_14·a_1_2·a_3_7 + c_4_14·a_1_0·a_3_9
+ a_2_3·c_4_14·a_1_2·b_1_1
- b_4_13·a_5_18 + b_4_13·b_1_12·a_3_7 + b_2_4·b_4_13·a_3_7 + b_2_4·b_2_52·a_3_9
+ b_2_42·b_2_5·a_3_7 + b_2_5·c_4_14·a_3_9 + b_2_5·c_4_14·a_3_4 + b_2_52·c_4_14·a_1_0
- a_4_10·a_5_18 + a_2_3·c_4_14·a_3_7
- a_5_182 + b_1_14·a_3_72 + c_4_142·a_1_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_14, a Duflot regular element of degree 4
- c_4_15, a Duflot regular element of degree 4
- b_1_12 + b_2_5 + b_2_4, an element of degree 2
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_13 → 0, an element of degree 4
- c_4_14 → c_1_04, an element of degree 4
- c_4_15 → c_1_14 + c_1_04, an element of degree 4
- a_5_18 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_13 → c_1_22·c_1_32 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32, an element of degree 4
- c_4_14 → c_1_2·c_1_33 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_15 → c_1_34 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_12·c_1_32 + c_1_14
+ c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_18 → 0, an element of degree 5
|