Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 559 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t6 + 1/2·t4 + 1/2·t2 + 1/2·t + 1/2) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_3_7, a nilpotent element of degree 3
- a_4_6, a nilpotent element of degree 4
- b_4_11, an element of degree 4
- b_4_12, an element of degree 4
- b_5_15, an element of degree 5
- b_5_16, an element of degree 5
- a_6_13, a nilpotent element of degree 6
- b_6_22, an element of degree 6
- b_7_27, an element of degree 7
- b_7_28, an element of degree 7
- a_8_23, a nilpotent element of degree 8
- c_8_35, a Duflot regular element of degree 8
Ring relations
There are 111 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_2_3·a_1_0
- b_2_4·a_1_0 + a_2_3·a_1_2
- b_2_4·a_1_2 + a_2_3·b_1_1 + a_2_3·a_1_2
- a_2_32
- a_2_3·b_1_12 + a_2_3·b_2_4
- b_2_5·b_1_12 + b_2_42
- b_2_5·a_1_2·b_1_1 + a_2_3·b_1_12
- b_2_5·a_1_22
- a_1_0·a_3_7
- b_2_4·b_1_12 + b_2_42 + a_2_3·b_1_12 + a_1_2·a_3_7 + a_2_3·a_1_2·b_1_1
- a_2_3·b_2_5·b_1_1 + a_2_3·b_2_4·b_1_1 + a_2_3·b_2_5·a_1_2
- b_2_4·b_2_5·b_1_1 + b_2_42·b_1_1 + a_2_3·b_2_4·b_1_1 + a_2_3·a_3_7
- b_1_12·a_3_7 + a_4_6·b_1_1 + b_2_4·a_3_7 + a_2_3·b_2_5·b_1_1 + a_1_2·b_1_1·a_3_7
- a_4_6·a_1_0
- b_2_4·b_2_5·b_1_1 + b_2_42·b_1_1 + a_2_3·b_2_5·b_1_1 + a_1_2·b_1_1·a_3_7 + a_4_6·a_1_2
- b_4_11·b_1_1 + b_2_4·b_2_5·b_1_1 + b_2_5·a_3_7 + a_2_3·b_2_5·b_1_1 + a_1_2·b_1_1·a_3_7
- b_2_52·b_1_1 + b_2_42·b_1_1 + b_4_11·a_1_0 + b_2_52·a_1_2 + a_2_3·b_2_4·b_1_1
- b_2_52·b_1_1 + b_2_42·b_1_1 + b_4_11·a_1_2 + b_2_5·a_3_7 + b_2_52·a_1_2 + b_2_4·a_3_7
+ a_2_3·b_2_5·b_1_1 + a_2_3·b_2_4·b_1_1
- b_4_12·a_1_0
- a_3_72
- b_2_4·a_4_6 + a_2_3·b_2_42
- a_2_3·a_4_6
- b_2_5·a_4_6 + a_2_3·b_4_11 + a_2_3·b_2_52 + a_2_3·b_2_42 + a_2_3·b_1_1·a_3_7
- a_1_0·b_5_15
- a_1_2·b_5_15 + b_4_12·a_1_2·b_1_1 + a_2_3·b_4_12 + a_2_3·b_2_42
- a_1_0·b_5_16
- b_1_1·b_5_15 + b_4_12·b_1_12 + b_2_4·b_4_12 + b_2_43 + a_1_2·b_5_16 + a_2_3·b_2_42
+ a_4_6·a_1_2·b_1_1 + a_2_3·b_1_1·a_3_7
- a_4_6·a_3_7 + a_2_3·b_2_4·a_3_7
- b_4_11·a_3_7 + b_2_5·b_4_12·a_1_2 + b_2_52·a_3_7 + a_2_3·b_4_12·b_1_1
+ a_2_3·b_2_5·a_3_7 + a_2_3·b_2_4·a_3_7
- b_4_11·a_3_7 + b_2_52·a_3_7 + a_2_3·b_5_15 + a_2_3·b_2_42·b_1_1 + a_2_3·b_2_5·a_3_7
+ a_2_3·b_2_4·a_3_7
- b_2_5·b_4_12·b_1_1 + b_2_4·b_4_12·b_1_1 + a_1_2·b_1_1·b_5_16 + b_4_12·a_1_2·b_1_12
+ b_2_5·b_4_12·a_1_2 + a_2_3·b_2_42·b_1_1
- b_2_5·b_4_12·b_1_1 + b_2_4·b_5_15 + b_2_4·b_4_12·b_1_1 + b_2_43·b_1_1 + a_2_3·b_5_16
+ a_2_3·b_2_5·a_3_7 + a_2_3·b_2_52·a_1_2 + a_2_3·b_2_4·a_3_7
- b_2_5·b_4_12·b_1_1 + b_2_4·b_5_16 + b_2_43·b_1_1 + a_6_13·b_1_1 + b_4_12·a_1_2·b_1_12
+ a_4_6·b_1_13 + b_2_5·b_4_12·a_1_2 + a_2_3·b_2_5·a_3_7 + a_2_3·b_2_52·a_1_2
- a_6_13·a_1_0
- b_2_5·b_4_12·b_1_1 + b_2_4·b_5_15 + b_2_4·b_4_12·b_1_1 + b_2_43·b_1_1
+ b_2_5·b_4_12·a_1_2 + a_2_3·b_2_42·b_1_1 + a_6_13·a_1_2 + a_4_6·a_1_2·b_1_12 + a_2_3·b_2_52·a_1_2
- b_6_22·a_1_0 + b_2_5·b_4_11·a_1_0
- b_1_12·b_5_16 + b_4_12·b_1_13 + b_2_4·b_5_15 + b_6_22·a_1_2 + b_4_12·a_3_7
+ b_4_11·a_3_7 + b_2_5·b_4_12·a_1_2 + b_2_5·b_4_11·a_1_0 + b_2_42·a_3_7 + a_2_3·b_2_42·b_1_1 + a_2_3·b_2_5·a_3_7
- a_4_62
- b_4_112 + b_2_52·b_4_12 + b_2_52·b_4_11 + b_2_42·b_4_12 + b_2_42·b_1_1·a_3_7
+ a_2_3·b_2_53 + a_2_3·b_2_43
- a_4_6·b_4_11 + a_2_3·b_2_5·b_4_12 + a_2_3·b_2_4·b_4_12 + a_2_3·b_2_43
+ a_2_3·b_2_4·b_1_1·a_3_7
- a_3_7·b_5_15 + a_4_6·b_4_12 + b_2_42·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12
+ a_2_3·b_2_4·b_1_1·a_3_7
- b_4_112 + b_2_52·b_4_12 + b_2_52·b_4_11 + b_2_4·b_2_5·b_4_12 + a_4_6·b_4_11
+ b_2_5·a_1_2·b_5_16 + b_2_42·b_1_1·a_3_7 + a_2_3·b_2_53 + a_2_3·b_2_43 + a_2_3·b_2_4·b_1_1·a_3_7
- b_2_5·b_1_1·b_5_16 + b_2_4·b_2_5·b_4_12 + b_2_44 + a_6_13·b_1_12
+ b_4_12·a_1_2·b_1_13 + a_4_6·b_1_14 + a_2_3·b_2_5·b_4_12 + b_4_12·a_1_2·a_3_7 + a_2_3·b_2_4·b_1_1·a_3_7
- b_2_5·b_1_1·b_5_16 + b_2_4·b_2_5·b_4_12 + b_2_44 + a_4_6·b_4_11 + b_2_4·a_6_13
- b_4_112 + b_2_52·b_4_12 + b_2_52·b_4_11 + b_2_4·b_2_5·b_4_12 + a_4_6·b_4_11
+ b_2_42·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12 + a_2_3·b_2_53 + a_2_3·a_6_13 + a_2_3·b_2_4·b_1_1·a_3_7
- b_4_11·b_4_12 + b_2_5·b_6_22 + b_2_52·b_4_11 + b_2_4·b_6_22 + b_2_4·b_2_5·b_4_12
+ b_2_4·b_2_5·b_4_11 + a_3_7·b_5_16 + b_4_12·b_1_1·a_3_7 + a_4_6·b_4_11 + b_2_5·a_6_13 + b_2_42·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12 + a_2_3·b_2_5·b_4_11 + a_2_3·b_2_43 + a_6_13·a_1_2·b_1_1 + b_4_12·a_1_2·a_3_7 + a_4_6·a_1_2·b_1_13
- b_4_112 + b_2_5·b_1_1·b_5_16 + b_2_52·b_4_12 + b_2_52·b_4_11 + b_2_44
+ b_4_12·b_1_1·a_3_7 + a_4_6·b_4_12 + b_2_42·b_1_1·a_3_7 + a_2_3·b_6_22 + a_2_3·b_2_5·b_4_11 + a_2_3·b_2_53 + a_2_3·b_2_43 + a_6_13·a_1_2·b_1_1 + b_4_12·a_1_2·a_3_7 + a_4_6·a_1_2·b_1_13 + a_2_3·b_2_4·b_1_1·a_3_7
- b_1_1·b_7_27 + b_4_11·b_4_12 + b_4_112 + b_2_5·b_1_1·b_5_16 + b_2_5·b_6_22
+ b_2_52·b_4_12 + b_6_22·a_1_2·b_1_1 + b_4_12·b_1_1·a_3_7 + b_2_5·a_6_13 + a_2_3·b_2_5·b_4_11 + a_2_3·b_2_53 + a_2_3·b_2_43 + a_4_6·a_1_2·b_1_13 + a_2_3·b_2_4·b_1_1·a_3_7
- a_1_0·b_7_27
- b_2_5·b_1_1·b_5_16 + b_2_4·b_2_5·b_4_12 + b_2_44 + a_1_2·b_7_27 + b_4_12·b_1_1·a_3_7
+ a_4_6·b_4_12 + a_4_6·b_4_11 + a_6_13·a_1_2·b_1_1 + a_4_6·a_1_2·b_1_13 + a_2_3·b_2_4·b_1_1·a_3_7
- a_1_0·b_7_28
- a_3_7·b_5_16 + a_1_2·b_7_28 + b_6_22·a_1_2·b_1_1 + b_4_12·b_1_1·a_3_7
+ b_4_12·a_1_2·b_1_13 + a_4_6·b_4_11 + b_2_42·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12 + a_6_13·a_1_2·b_1_1 + b_4_12·a_1_2·a_3_7 + a_4_6·a_1_2·b_1_13
- a_4_6·b_5_15 + a_4_6·b_4_12·b_1_1 + b_2_5·b_4_12·a_3_7 + b_2_4·b_4_12·a_3_7
+ a_2_3·b_2_5·b_5_15 + a_2_3·b_2_4·b_4_12·b_1_1 + a_4_6·b_4_12·a_1_2 + a_2_3·b_4_12·a_3_7
- b_2_5·a_6_13·b_1_1 + b_2_4·b_4_12·a_3_7 + a_2_3·b_6_22·b_1_1 + b_2_5·a_6_13·a_1_2
+ a_2_3·b_2_52·a_3_7
- b_4_11·b_5_15 + b_2_5·b_7_27 + b_2_52·b_5_15 + b_2_4·b_6_22·b_1_1
+ b_2_42·b_4_12·b_1_1 + a_4_6·b_5_16 + a_4_6·b_4_12·b_1_1 + b_2_54·a_1_2 + b_2_43·a_3_7 + a_2_3·b_2_5·b_5_15 + a_2_3·b_2_4·b_4_12·b_1_1 + a_2_3·b_2_43·b_1_1 + a_6_13·a_3_7 + b_2_5·a_6_13·a_1_2 + a_2_3·b_2_53·a_1_2 + a_2_3·b_2_42·a_3_7
- b_2_4·b_7_27 + b_2_4·b_6_22·b_1_1 + b_2_42·b_4_12·b_1_1 + a_4_6·b_5_16
+ a_4_6·b_4_12·b_1_1 + b_2_5·a_6_13·b_1_1 + b_2_5·b_4_12·a_3_7 + a_2_3·b_2_5·b_5_15 + b_2_5·a_6_13·a_1_2 + a_2_3·b_4_12·a_3_7 + a_2_3·b_2_53·a_1_2
- b_2_5·a_6_13·b_1_1 + b_2_5·b_4_12·a_3_7 + a_2_3·b_7_27 + a_2_3·b_2_5·b_5_15
+ a_2_3·b_2_4·b_4_12·b_1_1 + a_2_3·b_2_43·b_1_1 + b_2_5·a_6_13·a_1_2 + a_2_3·b_4_12·a_3_7 + a_2_3·b_2_53·a_1_2 + a_2_3·b_2_42·a_3_7
- b_1_12·b_7_28 + b_6_22·b_1_13 + b_4_12·b_1_15 + b_2_42·b_4_12·b_1_1
+ b_2_44·b_1_1 + b_6_22·a_3_7 + b_4_122·a_1_2 + a_4_6·b_5_16 + b_2_5·a_6_13·b_1_1 + b_2_53·a_3_7 + b_2_43·a_3_7 + a_2_3·b_2_4·b_4_12·b_1_1 + a_4_6·b_4_12·a_1_2 + a_2_3·b_2_42·a_3_7
- a_1_2·b_1_1·b_7_28 + b_6_22·a_1_2·b_1_12 + b_4_12·a_1_2·b_1_14 + a_4_6·b_5_16
+ a_4_6·b_4_12·b_1_1 + b_2_5·b_4_12·a_3_7 + b_2_4·b_4_12·a_3_7 + a_2_3·b_2_5·b_5_15 + a_2_3·b_2_4·b_4_12·b_1_1 + a_2_3·b_2_43·b_1_1 + a_6_13·a_3_7 + b_2_5·a_6_13·a_1_2
- b_4_11·b_5_16 + b_2_5·b_7_28 + b_2_4·b_7_28 + b_2_42·b_4_12·b_1_1 + b_2_44·b_1_1
+ a_4_6·b_5_16 + a_4_6·b_4_12·b_1_1 + b_2_53·a_3_7 + a_2_3·b_2_5·b_5_15 + a_2_3·b_2_4·b_4_12·b_1_1 + a_6_13·a_3_7 + a_4_6·b_4_12·a_1_2 + b_2_5·a_6_13·a_1_2
- b_2_5·a_6_13·b_1_1 + b_2_5·b_4_12·a_3_7 + a_2_3·b_7_28 + a_2_3·b_2_43·b_1_1
+ a_6_13·a_3_7 + a_4_6·b_4_12·a_1_2 + b_2_5·a_6_13·a_1_2 + a_2_3·b_2_42·a_3_7
- b_4_11·b_5_16 + b_2_5·b_7_28 + b_2_4·b_6_22·b_1_1 + b_2_42·b_4_12·b_1_1 + a_8_23·b_1_1
+ b_6_22·a_3_7 + b_6_22·a_1_2·b_1_12 + b_4_122·a_1_2 + b_2_43·a_3_7 + a_2_3·b_2_5·b_5_15 + a_2_3·b_2_43·b_1_1 + a_6_13·a_3_7 + a_4_6·a_1_2·b_1_14 + a_2_3·b_4_12·a_3_7 + a_2_3·b_2_52·a_3_7 + a_2_3·b_2_53·a_1_2
- a_8_23·a_1_0 + a_2_3·b_2_53·a_1_2
- a_4_6·b_5_16 + a_4_6·b_4_12·b_1_1 + b_2_5·b_4_12·a_3_7 + b_2_4·b_4_12·a_3_7
+ a_2_3·b_2_5·b_5_15 + a_8_23·a_1_2 + b_2_5·a_6_13·a_1_2 + a_2_3·b_2_53·a_1_2
- b_5_152 + b_4_122·b_1_12 + b_2_5·b_4_122 + b_2_45 + a_2_3·b_2_44
+ a_2_3·b_2_42·b_1_1·a_3_7
- b_5_15·b_5_16 + b_4_12·b_1_1·b_5_16 + b_2_5·b_4_122 + b_2_45 + b_4_12·a_6_13
+ a_4_6·b_4_12·b_1_12 + b_2_42·a_6_13 + a_2_3·b_4_122 + a_2_3·b_2_5·b_6_22 + a_2_3·b_2_52·b_4_11 + a_2_3·b_2_4·b_6_22 + a_4_6·b_4_12·a_1_2·b_1_1 + a_2_3·b_2_5·a_6_13 + a_2_3·b_2_4·a_6_13 + a_2_3·b_2_42·b_1_1·a_3_7
- b_5_15·b_5_16 + b_4_12·b_1_1·b_5_16 + b_4_11·b_6_22 + b_2_52·b_6_22 + b_2_53·b_4_12
+ b_2_4·b_4_122 + b_2_43·b_4_12 + b_2_45 + b_6_22·b_1_1·a_3_7 + b_4_12·a_1_2·b_5_16 + b_4_12·a_6_13 + b_4_122·a_1_2·b_1_1 + b_4_11·a_6_13 + a_4_6·b_6_22 + a_4_6·b_4_12·b_1_12 + b_2_52·a_6_13 + b_2_42·a_6_13 + a_2_3·b_2_5·b_6_22 + a_2_3·b_2_52·b_4_12 + a_2_3·b_2_52·b_4_11 + a_2_3·b_2_54 + a_2_3·b_2_42·b_4_12 + a_2_3·b_2_44 + a_6_13·b_1_1·a_3_7 + a_2_3·b_2_5·a_6_13 + a_2_3·b_2_42·b_1_1·a_3_7
- a_3_7·b_7_27 + b_6_22·b_1_1·a_3_7 + a_4_6·b_6_22 + b_2_42·a_6_13 + a_2_3·b_2_52·b_4_12
+ a_2_3·b_2_42·b_4_12 + a_6_13·b_1_1·a_3_7 + a_4_6·a_6_13 + a_2_3·b_2_42·b_1_1·a_3_7
- b_5_15·b_5_16 + b_4_12·b_1_1·b_5_16 + b_2_5·b_4_122 + b_2_45 + a_3_7·b_7_28
+ b_6_22·b_1_1·a_3_7 + b_4_12·a_1_2·b_5_16 + b_4_12·a_6_13 + b_4_122·a_1_2·b_1_1 + b_2_42·a_6_13 + b_2_43·b_1_1·a_3_7 + a_2_3·b_4_122 + a_2_3·b_2_44 + a_6_13·b_1_1·a_3_7 + a_4_6·a_6_13 + a_2_3·b_2_5·a_6_13
- b_2_5·a_1_2·b_7_28 + a_2_3·b_2_5·b_6_22 + a_2_3·b_2_52·b_4_11 + a_6_13·b_1_1·a_3_7
+ a_4_6·a_6_13 + a_2_3·b_2_42·b_1_1·a_3_7
- b_5_162 + b_4_122·b_1_12 + b_2_5·b_4_122 + b_2_4·b_4_122 + b_2_45
+ b_4_12·a_1_2·b_5_16 + b_4_122·a_1_2·b_1_1 + a_2_3·b_4_122 + a_2_3·b_2_42·b_4_12 + a_2_3·b_2_44 + a_2_3·b_2_42·b_1_1·a_3_7 + c_8_35·a_1_22
- b_5_15·b_5_16 + b_4_12·b_1_1·b_5_16 + b_2_5·b_4_122 + b_2_45 + a_8_23·b_1_12
+ b_6_22·a_1_2·b_1_13 + b_4_12·a_6_13 + b_4_122·a_1_2·b_1_1 + a_4_6·b_6_22 + a_4_6·b_4_12·b_1_12 + a_2_3·b_2_5·b_6_22 + a_2_3·b_2_52·b_4_12 + a_2_3·b_2_52·b_4_11 + a_6_13·b_1_1·a_3_7 + a_4_6·a_1_2·b_1_15 + a_4_6·a_6_13 + a_4_6·b_4_12·a_1_2·b_1_1 + a_2_3·b_2_5·a_6_13 + a_2_3·b_2_4·a_6_13
- b_2_4·b_2_54 + b_2_45 + b_4_11·a_6_13 + b_2_5·a_8_23 + a_2_3·b_2_5·b_6_22
+ a_2_3·b_2_52·b_4_11 + a_2_3·b_2_54 + a_2_3·b_2_42·b_4_12 + a_4_6·a_6_13 + a_4_6·b_4_12·a_1_2·b_1_1 + a_2_3·b_2_5·a_6_13 + a_2_3·b_2_4·a_6_13
- b_5_15·b_5_16 + b_4_12·b_1_1·b_5_16 + b_2_5·b_4_122 + b_2_45 + b_4_12·a_6_13
+ a_4_6·b_4_12·b_1_12 + b_2_4·a_8_23 + a_2_3·b_4_122 + a_2_3·b_2_5·b_6_22 + a_2_3·b_2_52·b_4_11 + a_2_3·b_2_42·b_4_12 + a_6_13·b_1_1·a_3_7 + a_2_3·b_2_5·a_6_13 + a_2_3·b_2_4·a_6_13
- a_4_6·a_6_13 + a_4_6·b_4_12·a_1_2·b_1_1 + a_2_3·a_8_23 + a_2_3·b_2_5·a_6_13
+ a_2_3·b_2_4·a_6_13
- b_2_5·b_4_12·b_5_16 + b_2_5·b_4_12·b_5_15 + b_2_4·b_4_122·b_1_1 + a_6_13·b_5_15
+ b_4_12·a_1_2·b_1_1·b_5_16 + b_4_12·a_6_13·b_1_1 + b_4_122·a_1_2·b_1_12 + b_2_42·b_4_12·a_3_7 + a_2_3·b_2_5·b_7_27 + a_2_3·b_2_52·b_5_15 + a_2_3·b_2_44·b_1_1 + a_4_6·b_4_12·a_1_2·b_1_12 + a_2_3·b_2_54·a_1_2 + a_2_3·b_2_43·a_3_7
- b_2_5·b_4_12·b_5_16 + b_2_5·b_4_12·b_5_15 + b_2_4·b_4_122·b_1_1 + a_6_13·b_5_15
+ b_4_12·a_1_2·b_1_1·b_5_16 + b_4_12·a_6_13·b_1_1 + b_4_122·a_1_2·b_1_12 + a_4_6·b_7_27 + b_2_42·b_4_12·a_3_7 + a_2_3·b_4_12·b_5_15 + a_2_3·b_2_52·b_5_15 + a_2_3·b_2_42·b_4_12·b_1_1 + a_2_3·b_2_44·b_1_1 + a_4_6·b_6_22·a_1_2 + a_4_6·b_4_12·a_1_2·b_1_12 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_54·a_1_2
- b_4_11·b_7_27 + b_2_5·b_4_12·b_5_16 + b_2_4·b_4_122·b_1_1 + b_2_42·b_6_22·b_1_1
+ a_6_13·b_5_15 + b_4_12·a_1_2·b_1_1·b_5_16 + b_4_12·a_6_13·b_1_1 + b_4_122·a_1_2·b_1_12 + b_2_53·b_4_11·a_1_0 + b_2_54·a_3_7 + b_2_4·b_6_22·a_3_7 + b_2_44·a_3_7 + a_2_3·b_4_12·b_5_15 + a_2_3·b_2_52·b_5_15 + a_2_3·b_2_44·b_1_1 + a_4_6·b_4_12·a_1_2·b_1_12 + a_2_3·b_2_54·a_1_2 + a_2_3·b_2_4·b_4_12·a_3_7
- b_6_22·b_5_15 + b_4_12·b_7_27 + b_4_12·b_6_22·b_1_1 + b_2_5·b_4_12·b_5_16
+ b_2_52·b_7_27 + b_2_53·b_5_15 + b_2_45·b_1_1 + b_4_12·a_1_2·b_1_1·b_5_16 + b_4_122·a_3_7 + b_4_122·a_1_2·b_1_12 + b_2_55·a_1_2 + a_2_3·b_2_52·b_5_15 + a_2_3·b_2_42·b_4_12·b_1_1 + b_4_12·a_6_13·a_1_2 + a_4_6·b_6_22·a_1_2 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_54·a_1_2 + a_2_3·b_2_4·b_4_12·a_3_7 + a_2_3·b_2_43·a_3_7
- b_4_12·a_1_2·b_1_1·b_5_16 + b_4_122·a_1_2·b_1_12 + a_4_6·b_7_28
+ a_4_6·b_6_22·b_1_1 + a_4_6·b_4_12·b_1_13 + a_2_3·b_4_12·b_5_15 + a_2_3·b_2_42·b_4_12·b_1_1 + a_2_3·b_2_44·b_1_1 + b_4_12·a_6_13·a_1_2 + a_4_6·b_4_12·a_1_2·b_1_12 + a_2_3·b_6_22·a_3_7 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_4·b_4_12·a_3_7 + a_2_3·b_2_43·a_3_7
- b_4_11·b_7_28 + b_2_5·b_4_12·b_5_16 + b_2_52·b_7_28 + b_2_4·b_4_122·b_1_1
+ b_2_43·b_4_12·b_1_1 + b_4_12·a_6_13·b_1_1 + b_4_122·a_1_2·b_1_12 + a_4_6·b_4_12·b_1_13 + b_2_4·b_6_22·a_3_7 + b_2_44·a_3_7 + a_2_3·b_4_12·b_5_15 + a_2_3·b_4_122·b_1_1 + a_4_6·b_6_22·a_1_2 + a_4_6·b_4_12·a_1_2·b_1_12 + b_2_52·a_6_13·a_1_2 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_4·b_4_12·a_3_7
- b_6_22·b_5_16 + b_4_12·b_7_28 + b_4_122·b_1_13 + b_2_52·b_7_28
+ b_2_4·b_4_122·b_1_1 + b_2_43·b_4_12·b_1_1 + b_2_45·b_1_1 + b_6_22·a_1_2·b_1_14 + a_6_13·b_5_16 + b_4_12·a_1_2·b_1_1·b_5_16 + b_4_12·b_6_22·a_1_2 + b_4_12·a_6_13·b_1_1 + b_4_122·a_3_7 + b_2_54·a_3_7 + b_2_4·b_6_22·a_3_7 + b_2_44·a_3_7 + a_2_3·b_4_122·b_1_1 + b_4_12·a_6_13·a_1_2 + a_4_6·a_1_2·b_1_16 + a_2_3·b_6_22·a_3_7 + a_2_3·b_2_43·a_3_7 + c_8_35·a_1_2·b_1_12
- a_6_13·b_5_16 + a_6_13·b_5_15 + b_4_12·a_6_13·b_1_1 + b_4_122·a_1_2·b_1_12
+ a_4_6·b_4_12·b_1_13 + a_2_3·b_4_122·b_1_1 + a_2_3·b_2_42·b_4_12·b_1_1 + b_4_12·a_6_13·a_1_2 + a_4_6·b_6_22·a_1_2 + b_2_5·a_6_13·a_3_7 + a_2_3·b_6_22·a_3_7 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_54·a_1_2 + a_2_3·b_2_43·a_3_7 + a_2_3·c_8_35·a_1_2
- b_4_12·a_1_2·b_1_1·b_5_16 + b_4_122·a_1_2·b_1_12 + a_2_3·b_2_42·b_4_12·b_1_1
+ a_8_23·a_3_7 + b_4_12·a_6_13·a_1_2 + a_4_6·b_6_22·a_1_2 + a_4_6·b_4_12·a_1_2·b_1_12 + b_2_5·a_6_13·a_3_7 + a_2_3·b_6_22·a_3_7 + a_2_3·b_2_53·a_3_7 + a_2_3·b_2_4·b_4_12·a_3_7 + a_2_3·b_2_43·a_3_7
- a_6_132
- b_5_16·b_7_27 + b_5_15·b_7_27 + b_2_4·b_4_12·b_6_22 + b_2_42·b_4_122 + a_6_13·b_6_22
+ b_4_12·b_6_22·a_1_2·b_1_1 + a_4_6·b_6_22·b_1_12 + b_2_5·b_4_12·a_6_13 + b_2_5·b_4_11·a_6_13 + b_2_43·a_6_13 + a_2_3·b_2_5·b_4_122 + a_2_3·b_2_4·b_4_122 + a_2_3·b_2_42·b_6_22 + b_4_12·a_6_13·a_1_2·b_1_1 + b_4_122·a_1_2·a_3_7 + a_4_6·b_4_12·a_1_2·b_1_13 + a_2_3·b_4_12·a_6_13 + a_2_3·b_2_52·a_6_13
- b_5_16·b_7_27 + b_6_22·b_1_16 + b_6_222 + b_4_12·b_6_22·b_1_12 + b_4_122·b_1_14
+ b_4_123 + b_2_52·b_4_122 + b_2_54·b_4_12 + b_2_54·b_4_11 + b_2_4·b_4_12·b_6_22 + b_2_42·b_4_122 + b_2_44·b_4_12 + b_2_46 + a_6_13·b_6_22 + b_4_12·b_6_22·a_1_2·b_1_1 + b_4_122·a_1_2·b_1_13 + a_4_6·b_1_18 + a_4_6·b_4_12·b_1_14 + b_2_5·b_4_12·a_6_13 + b_2_5·b_4_11·a_6_13 + b_2_4·b_4_12·a_6_13 + b_2_43·a_6_13 + b_2_44·b_1_1·a_3_7 + a_2_3·b_4_12·b_6_22 + a_2_3·b_2_52·b_6_22 + a_2_3·b_2_53·b_4_12 + a_2_3·b_2_53·b_4_11 + a_2_3·b_2_55 + a_2_3·b_2_4·b_4_122 + a_2_3·b_2_43·b_4_12 + a_4_6·a_1_2·b_1_17 + a_4_6·b_6_22·a_1_2·b_1_1 + c_8_35·b_1_14
- b_5_16·b_7_28 + b_4_12·b_6_22·b_1_12 + b_4_122·b_1_14 + b_2_5·b_4_12·b_6_22
+ b_2_53·b_6_22 + b_2_54·b_4_11 + b_2_4·b_4_12·b_6_22 + b_2_42·b_4_122 + b_2_44·b_4_12 + b_6_22·a_1_2·b_1_15 + b_4_12·a_1_2·b_7_28 + b_4_12·b_6_22·a_1_2·b_1_1 + b_2_5·b_4_12·a_6_13 + b_2_53·a_6_13 + b_2_4·b_6_22·b_1_1·a_3_7 + b_2_43·a_6_13 + b_2_44·b_1_1·a_3_7 + a_2_3·b_4_12·b_6_22 + a_2_3·b_2_53·b_4_11 + a_2_3·b_2_4·b_4_122 + a_2_3·b_2_45 + a_4_6·a_1_2·b_1_17 + a_4_6·b_4_12·a_1_2·b_1_13 + a_2_3·b_2_52·a_6_13 + c_8_35·a_1_2·b_1_13 + c_8_35·a_1_2·a_3_7
- b_5_16·b_7_27 + b_5_15·b_7_28 + b_4_12·b_1_1·b_7_28 + b_2_52·b_4_122 + b_2_46
+ b_4_12·a_1_2·b_7_28 + b_4_12·b_6_22·a_1_2·b_1_1 + a_4_6·b_4_122 + b_2_5·b_4_12·a_6_13 + b_2_4·b_6_22·b_1_1·a_3_7 + b_2_4·b_4_12·a_6_13 + b_2_43·a_6_13 + a_2_3·b_4_12·b_6_22 + a_2_3·b_2_5·b_4_122 + a_2_3·b_2_52·b_6_22 + a_2_3·b_2_53·b_4_12 + a_2_3·b_2_53·b_4_11 + a_2_3·b_2_4·b_4_122 + a_2_3·b_2_45 + b_4_12·a_6_13·a_1_2·b_1_1 + a_4_6·b_6_22·a_1_2·b_1_1 + a_4_6·b_4_12·a_1_2·b_1_13 + a_2_3·b_2_42·a_6_13 + a_2_3·b_2_4·c_8_35 + a_2_3·c_8_35·a_1_2·b_1_1
- b_5_16·b_7_27 + b_2_5·b_4_12·b_6_22 + b_2_52·b_4_122 + b_2_53·b_6_22
+ b_2_54·b_4_11 + b_2_44·b_4_12 + b_2_46 + a_6_13·b_6_22 + b_4_12·a_1_2·b_7_28 + b_4_12·b_6_22·a_1_2·b_1_1 + b_4_122·a_1_2·b_1_13 + a_4_6·b_6_22·b_1_12 + a_4_6·b_4_122 + b_2_5·b_4_11·a_6_13 + b_2_53·a_6_13 + b_2_4·b_4_12·a_6_13 + b_2_44·b_1_1·a_3_7 + a_2_3·b_2_53·b_4_12 + a_2_3·b_2_53·b_4_11 + a_2_3·b_2_42·b_6_22 + a_2_3·b_2_45 + b_4_122·a_1_2·a_3_7 + a_4_6·b_4_12·a_1_2·b_1_13 + a_2_3·b_2_5·a_8_23 + a_2_3·b_2_42·a_6_13
- b_4_122·a_1_2·a_3_7 + a_4_6·a_8_23 + a_4_6·b_6_22·a_1_2·b_1_1 + a_2_3·b_4_12·a_6_13
+ a_2_3·b_2_42·a_6_13
- b_2_4·b_2_53·b_4_11 + b_2_46 + b_4_11·a_8_23 + b_2_5·b_4_12·a_6_13
+ b_2_5·b_4_11·a_6_13 + b_2_4·b_4_12·a_6_13 + b_2_44·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_122 + a_2_3·b_2_52·b_6_22 + a_2_3·b_2_4·b_4_122 + a_2_3·b_2_43·b_4_12 + a_2_3·b_2_45 + a_2_3·b_4_12·a_6_13 + a_2_3·b_2_43·b_1_1·a_3_7
- b_5_15·b_7_28 + b_4_12·b_6_22·b_1_12 + b_4_122·b_1_14 + b_2_5·b_4_12·b_6_22
+ b_2_53·b_6_22 + b_2_54·b_4_11 + b_2_42·b_4_122 + b_4_12·a_1_2·b_7_28 + b_4_12·a_8_23 + b_4_12·b_6_22·a_1_2·b_1_1 + a_4_6·b_4_122 + b_2_5·b_4_12·a_6_13 + b_2_53·a_6_13 + b_2_4·b_6_22·b_1_1·a_3_7 + b_2_44·b_1_1·a_3_7 + a_2_3·b_4_12·b_6_22 + a_2_3·b_2_52·b_6_22 + a_2_3·b_2_53·b_4_12 + a_2_3·b_2_4·b_4_122 + b_4_122·a_1_2·a_3_7 + a_4_6·b_6_22·a_1_2·b_1_1 + a_2_3·b_4_12·a_6_13 + a_2_3·b_2_52·a_6_13
- a_6_13·b_7_28 + a_6_13·b_7_27 + b_4_12·b_6_22·a_1_2·b_1_12 + b_4_122·a_1_2·b_1_14
+ a_4_6·b_6_22·b_1_13 + a_4_6·b_4_12·b_1_15 + b_2_5·a_6_13·b_5_15 + b_2_4·b_4_122·a_3_7 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_42·b_6_22·b_1_1 + a_2_3·b_2_43·b_4_12·b_1_1 + a_4_6·b_6_22·a_1_2·b_1_12 + b_2_53·a_6_13·a_1_2 + a_2_3·a_6_13·b_5_15 + a_2_3·b_2_54·a_3_7 + a_2_3·b_2_44·a_3_7 + a_2_3·c_8_35·a_3_7
- b_2_5·b_4_12·b_7_28 + b_2_5·b_4_12·b_7_27 + b_2_52·b_4_12·b_5_15
+ b_2_42·b_4_122·b_1_1 + a_6_13·b_7_27 + b_2_5·a_6_13·b_5_15 + b_2_43·b_4_12·a_3_7 + a_2_3·b_2_5·b_4_12·b_5_15 + a_2_3·b_2_53·b_5_15 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_42·b_6_22·b_1_1 + a_2_3·b_2_45·b_1_1 + b_4_12·a_6_13·a_3_7 + a_4_6·b_6_22·a_1_2·b_1_12 + b_2_53·a_6_13·a_1_2 + a_2_3·b_4_122·a_3_7 + a_2_3·b_2_4·b_6_22·a_3_7 + a_2_3·b_2_44·a_3_7 + a_2_3·b_2_4·c_8_35·b_1_1
- b_6_22·b_7_28 + b_6_222·b_1_1 + b_4_12·b_6_22·b_1_13 + b_4_122·b_5_16
+ b_4_123·b_1_1 + b_2_5·b_4_12·b_7_27 + b_2_53·b_7_28 + b_2_46·b_1_1 + a_6_13·b_7_28 + a_6_13·b_7_27 + b_4_12·b_6_22·a_1_2·b_1_12 + b_4_122·a_1_2·b_1_14 + a_4_6·b_4_12·b_1_15 + a_4_6·b_4_122·b_1_1 + b_2_55·a_3_7 + b_2_4·b_4_122·a_3_7 + b_2_42·b_6_22·a_3_7 + b_2_43·b_4_12·a_3_7 + b_2_45·a_3_7 + a_2_3·b_2_5·b_4_12·b_5_15 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_42·b_6_22·b_1_1 + a_2_3·b_2_43·b_4_12·b_1_1 + a_2_3·b_2_45·b_1_1 + b_4_12·a_6_13·a_3_7 + a_4_6·b_6_22·a_1_2·b_1_12 + b_2_52·a_6_13·a_3_7 + a_2_3·b_4_122·a_3_7 + a_2_3·b_2_54·a_3_7 + a_2_3·b_2_4·b_6_22·a_3_7 + a_2_3·b_2_42·b_4_12·a_3_7 + a_2_3·b_2_44·a_3_7 + a_4_6·c_8_35·b_1_1 + b_2_4·c_8_35·a_3_7 + a_2_3·b_2_5·c_8_35·a_1_2
- b_6_22·b_7_27 + b_4_122·b_5_15 + b_4_123·b_1_1 + b_2_52·b_4_12·b_5_15
+ b_2_42·b_4_122·b_1_1 + a_8_23·b_5_16 + b_6_222·a_1_2 + b_4_12·b_6_22·a_1_2·b_1_12 + b_2_5·a_6_13·b_5_15 + a_2_3·b_4_12·b_7_27 + a_2_3·b_4_12·b_6_22·b_1_1 + a_2_3·b_2_53·b_5_15 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_43·b_4_12·b_1_1 + a_4_6·b_4_12·a_1_2·b_1_14 + b_2_52·a_6_13·a_3_7 + b_2_53·a_6_13·a_1_2 + a_2_3·a_6_13·b_5_15 + a_2_3·b_4_122·a_3_7 + a_2_3·b_2_4·b_6_22·a_3_7 + a_2_3·b_2_42·b_4_12·a_3_7 + a_2_3·b_2_44·a_3_7 + b_2_42·c_8_35·b_1_1 + a_4_6·c_8_35·a_1_2 + a_2_3·b_2_5·c_8_35·a_1_2
- b_6_22·b_7_27 + b_4_122·b_5_15 + b_4_123·b_1_1 + b_2_5·b_4_12·b_7_28
+ b_2_5·b_4_12·b_7_27 + b_6_222·a_1_2 + b_4_12·b_6_22·a_3_7 + b_4_123·a_1_2 + b_2_5·a_6_13·b_5_15 + b_2_43·b_4_12·a_3_7 + a_2_3·b_4_12·b_7_27 + a_2_3·b_2_52·b_7_27 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_42·b_6_22·b_1_1 + a_2_3·b_2_43·b_4_12·b_1_1 + a_2_3·b_2_45·b_1_1 + b_4_12·a_8_23·a_1_2 + a_4_6·b_6_22·a_1_2·b_1_12 + a_4_6·b_4_122·a_1_2 + b_2_53·a_6_13·a_1_2 + a_2_3·a_6_13·b_5_15 + a_2_3·b_2_54·a_3_7 + a_2_3·b_2_4·b_6_22·a_3_7 + b_2_42·c_8_35·b_1_1
- b_2_5·b_4_12·b_7_28 + b_2_5·b_4_12·b_7_27 + b_2_52·b_4_12·b_5_15
+ b_2_42·b_4_122·b_1_1 + a_8_23·b_5_15 + b_4_12·b_6_22·a_3_7 + b_4_12·b_6_22·a_1_2·b_1_12 + b_4_123·a_1_2 + b_2_4·b_4_122·a_3_7 + b_2_43·b_4_12·a_3_7 + a_2_3·b_4_12·b_6_22·b_1_1 + a_2_3·b_2_52·b_7_27 + a_2_3·b_2_53·b_5_15 + a_2_3·b_2_4·b_4_122·b_1_1 + a_2_3·b_2_42·b_6_22·b_1_1 + a_2_3·b_2_45·b_1_1 + a_4_6·b_4_12·a_1_2·b_1_14 + b_2_53·a_6_13·a_1_2 + a_2_3·a_6_13·b_5_15 + a_2_3·b_2_4·b_6_22·a_3_7 + a_2_3·b_2_42·b_4_12·a_3_7
- b_7_282 + b_6_222·b_1_12 + b_4_122·b_1_16 + b_2_5·b_4_123
+ b_2_52·b_4_12·b_6_22 + b_2_54·b_6_22 + b_2_55·b_4_11 + b_2_4·b_4_123 + b_2_42·b_4_12·b_6_22 + b_2_43·b_4_122 + b_2_44·b_6_22 + b_4_122·a_1_2·b_5_16 + b_4_123·a_1_2·b_1_1 + b_2_52·b_4_12·a_6_13 + b_2_54·a_6_13 + b_2_42·b_4_12·a_6_13 + b_2_44·a_6_13 + b_2_45·b_1_1·a_3_7 + a_2_3·b_4_123 + a_2_3·b_2_5·b_4_12·b_6_22 + a_2_3·b_2_52·b_4_122 + a_2_3·b_2_53·b_6_22 + a_2_3·b_2_4·b_4_12·b_6_22 + a_2_3·b_2_42·b_4_122 + a_2_3·b_2_43·b_6_22 + a_2_3·b_2_4·b_4_12·a_6_13 + a_2_3·b_2_44·b_1_1·a_3_7
- b_7_272 + b_2_5·b_4_123 + b_2_52·b_4_12·b_6_22 + b_2_53·b_4_122 + b_2_54·b_6_22
+ b_2_55·b_4_11 + b_2_44·b_6_22 + b_2_45·b_4_12 + b_2_47 + b_2_52·b_4_12·a_6_13 + b_2_54·a_6_13 + b_2_44·a_6_13 + b_2_45·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12·b_6_22 + a_2_3·b_2_52·b_4_122 + a_2_3·b_2_53·b_6_22 + a_2_3·b_2_42·b_4_122 + b_2_43·c_8_35 + a_2_3·b_2_42·c_8_35 + a_2_3·c_8_35·b_1_1·a_3_7
- b_7_27·b_7_28 + b_7_272 + b_2_52·b_4_12·b_6_22 + b_2_53·b_4_122 + b_2_54·b_6_22
+ b_2_55·b_4_11 + b_2_45·b_4_12 + b_2_47 + b_6_222·a_1_2·b_1_1 + b_4_12·b_6_22·a_1_2·b_1_13 + b_4_122·a_1_2·b_5_16 + b_4_122·a_6_13 + a_4_6·b_4_12·b_6_22 + b_2_52·b_4_12·a_6_13 + b_2_54·a_6_13 + b_2_4·a_6_13·b_6_22 + b_2_45·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12·b_6_22 + a_2_3·b_2_54·b_4_11 + a_2_3·b_2_42·b_4_122 + a_2_3·b_2_43·b_6_22 + a_2_3·b_2_44·b_4_12 + a_4_6·b_4_12·a_1_2·b_1_15 + a_4_6·b_4_122·a_1_2·b_1_1 + a_2_3·a_6_13·b_6_22 + a_2_3·b_4_12·a_8_23 + a_2_3·b_2_53·a_6_13 + b_2_4·c_8_35·b_1_1·a_3_7 + a_4_6·c_8_35·a_1_2·b_1_1
- b_7_27·b_7_28 + b_7_272 + b_2_52·b_4_12·b_6_22 + b_2_53·b_4_122 + b_2_54·b_6_22
+ b_2_55·b_4_11 + b_2_45·b_4_12 + b_2_47 + b_6_222·a_1_2·b_1_1 + b_4_12·b_6_22·a_1_2·b_1_13 + b_4_122·a_1_2·b_5_16 + b_4_122·a_6_13 + a_4_6·b_4_12·b_6_22 + b_2_52·b_4_12·a_6_13 + b_2_54·a_6_13 + b_2_4·a_6_13·b_6_22 + b_2_45·b_1_1·a_3_7 + a_2_3·b_2_5·b_4_12·b_6_22 + a_2_3·b_2_54·b_4_11 + a_2_3·b_2_42·b_4_122 + a_2_3·b_2_43·b_6_22 + a_2_3·b_2_44·b_4_12 + a_6_13·a_8_23 + b_4_12·b_6_22·a_1_2·a_3_7 + a_4_6·b_6_22·a_1_2·b_1_13 + a_4_6·b_4_12·a_1_2·b_1_15 + a_2_3·a_6_13·b_6_22 + a_2_3·b_2_43·a_6_13 + b_2_4·c_8_35·b_1_1·a_3_7 + a_4_6·c_8_35·a_1_2·b_1_1
- b_7_27·b_7_28 + b_4_122·b_1_1·b_5_16 + b_4_123·b_1_12 + b_2_5·b_4_123
+ b_2_43·b_4_122 + b_2_44·b_6_22 + b_6_22·a_8_23 + b_4_12·b_6_22·a_1_2·b_1_13 + a_4_6·b_6_22·b_1_14 + b_2_5·b_4_12·a_8_23 + b_2_5·b_4_11·a_8_23 + b_2_42·b_4_12·a_6_13 + a_2_3·b_2_54·b_4_12 + a_2_3·b_2_4·b_4_12·b_6_22 + a_2_3·b_2_42·b_4_122 + a_2_3·b_2_44·b_4_12 + a_2_3·b_2_46 + b_4_12·b_6_22·a_1_2·a_3_7 + a_4_6·b_6_22·a_1_2·b_1_13 + a_4_6·b_4_12·a_1_2·b_1_15 + a_2_3·b_2_52·a_8_23 + b_2_43·c_8_35 + a_4_6·c_8_35·b_1_12 + b_2_4·c_8_35·b_1_1·a_3_7 + a_4_6·c_8_35·a_1_2·b_1_1
- a_8_23·b_7_28 + a_8_23·b_7_27 + b_6_222·a_1_2·b_1_12 + b_4_12·b_6_22·a_1_2·b_1_14
+ b_4_122·b_6_22·a_1_2 + b_4_122·a_6_13·b_1_1 + b_4_123·a_3_7 + a_4_6·b_6_22·b_1_15 + b_2_5·a_6_13·b_7_27 + b_2_52·a_6_13·b_5_15 + b_2_4·b_4_12·b_6_22·a_3_7 + a_2_3·b_2_54·b_5_15 + a_2_3·b_2_42·b_4_122·b_1_1 + a_2_3·b_2_44·b_4_12·b_1_1 + a_2_3·b_2_46·b_1_1 + b_4_122·a_6_13·a_1_2 + a_4_6·b_6_22·a_1_2·b_1_14 + a_4_6·b_4_12·a_1_2·b_1_16 + a_4_6·b_4_12·b_6_22·a_1_2 + a_2_3·b_2_5·a_6_13·b_5_15 + a_2_3·b_2_55·a_3_7 + a_2_3·b_2_4·b_4_122·a_3_7 + a_2_3·b_2_43·b_4_12·a_3_7 + a_4_6·c_8_35·b_1_13 + a_2_3·b_2_42·c_8_35·b_1_1 + a_2_3·b_2_5·c_8_35·a_3_7 + a_2_3·b_2_4·c_8_35·a_3_7
- a_8_23·b_7_27 + b_4_12·a_6_13·b_5_15 + b_4_123·a_1_2·b_1_12
+ a_4_6·b_4_122·b_1_13 + b_2_4·b_4_12·b_6_22·a_3_7 + a_2_3·b_4_122·b_5_15 + a_2_3·b_4_123·b_1_1 + a_2_3·b_2_53·b_7_27 + a_2_3·b_2_42·b_4_122·b_1_1 + a_2_3·b_2_43·b_6_22·b_1_1 + a_2_3·b_2_44·b_4_12·b_1_1 + b_4_12·a_8_23·a_3_7 + b_4_122·a_6_13·a_1_2 + a_4_6·b_6_22·a_1_2·b_1_14 + a_4_6·b_4_12·b_6_22·a_1_2 + a_4_6·b_4_122·a_1_2·b_1_12 + b_2_54·a_6_13·a_1_2 + a_2_3·a_6_13·b_7_27 + a_2_3·b_2_5·a_6_13·b_5_15 + a_2_3·b_2_55·a_3_7 + a_2_3·b_2_56·a_1_2 + a_2_3·b_2_4·b_4_122·a_3_7 + a_2_3·b_2_45·a_3_7 + a_4_6·c_8_35·a_1_2·b_1_12 + a_2_3·b_2_4·c_8_35·a_3_7
- a_8_232
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_35, a Duflot regular element of degree 8
- b_1_14 + b_4_12 + b_2_52, an element of degree 4
- b_1_1·b_5_16 + b_2_5·b_4_12 + b_2_4·b_4_12 + b_2_4·b_4_11 + b_2_43, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- b_4_12 → 0, an element of degree 4
- b_5_15 → 0, an element of degree 5
- b_5_16 → 0, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_22 → 0, an element of degree 6
- b_7_27 → 0, an element of degree 7
- b_7_28 → 0, an element of degree 7
- a_8_23 → 0, an element of degree 8
- c_8_35 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- b_4_12 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_15 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_16 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_22 → c_1_26 + c_1_14·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_7_27 → 0, an element of degree 7
- b_7_28 → c_1_1·c_1_26 + c_1_13·c_1_24 + c_1_02·c_1_15 + c_1_04·c_1_13, an element of degree 7
- a_8_23 → 0, an element of degree 8
- c_8_35 → c_1_28 + c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- b_4_11 → c_1_12·c_1_22, an element of degree 4
- b_4_12 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_15 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_5_16 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_22 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_27 → c_1_12·c_1_25 + c_1_16·c_1_2, an element of degree 7
- b_7_28 → c_1_14·c_1_23 + c_1_16·c_1_2, an element of degree 7
- a_8_23 → 0, an element of degree 8
- c_8_35 → c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- a_3_7 → 0, an element of degree 3
- a_4_6 → 0, an element of degree 4
- b_4_11 → c_1_24, an element of degree 4
- b_4_12 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_15 → c_1_25, an element of degree 5
- b_5_16 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_22 → c_1_26 + c_1_14·c_1_22 + c_1_16 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
- b_7_27 → c_1_12·c_1_25 + c_1_16·c_1_2 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- b_7_28 → c_1_14·c_1_23 + c_1_16·c_1_2 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- a_8_23 → 0, an element of degree 8
- c_8_35 → c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_16·c_1_22 + c_1_18 + c_1_02·c_1_26
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|