Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 59 of order 128
General information on the group
- The group has 2 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 − t3 + t2 − t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-5,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 19 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- b_3_2, an element of degree 3
- a_4_2, a nilpotent element of degree 4
- b_4_4, an element of degree 4
- a_5_3, a nilpotent element of degree 5
- a_5_4, a nilpotent element of degree 5
- b_5_5, an element of degree 5
- a_6_5, a nilpotent element of degree 6
- b_6_8, an element of degree 6
- a_7_8, a nilpotent element of degree 7
- b_7_10, an element of degree 7
- a_8_6, a nilpotent element of degree 8
- c_8_13, a Duflot regular element of degree 8
- a_9_11, a nilpotent element of degree 9
- a_10_12, a nilpotent element of degree 10
Ring relations
There are 136 minimal relations of maximal degree 20:
- a_1_02
- a_1_0·a_1_1
- a_2_1·a_1_1 + a_1_13
- a_2_1·a_1_0 + a_1_13
- b_2_2·a_1_0 + a_1_13
- a_2_12
- b_2_2·a_1_12
- a_1_0·a_3_3
- a_1_1·b_3_2 + a_2_1·b_2_2 + a_1_1·a_3_3
- a_1_0·b_3_2
- b_2_2·a_3_3 + a_2_1·a_3_3
- a_1_12·a_3_3
- b_2_22·a_1_1 + a_2_1·b_3_2
- b_2_2·a_3_3 + a_4_2·a_1_1
- a_4_2·a_1_0
- b_4_4·a_1_0
- a_3_32
- b_3_22 + b_2_23 + a_3_3·b_3_2 + a_2_1·b_2_22
- a_2_1·a_4_2
- a_3_3·b_3_2 + b_4_4·a_1_12
- a_3_3·b_3_2 + a_1_1·a_5_3
- a_1_0·a_5_3
- a_3_3·b_3_2 + b_2_2·a_4_2 + a_2_1·b_2_22 + a_1_1·a_5_4
- a_1_0·a_5_4
- a_1_0·b_5_5
- a_4_2·a_3_3
- b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2 + a_2_1·a_5_3
- a_4_2·b_3_2 + a_2_1·b_2_2·b_3_2 + a_2_1·a_5_4
- b_2_2·a_5_3 + b_2_2·b_4_4·a_1_1 + a_2_1·b_5_5 + a_2_1·b_2_2·b_3_2
- b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2 + a_1_12·b_5_5
- a_4_2·b_3_2 + a_2_1·b_2_2·b_3_2 + a_6_5·a_1_1
- a_6_5·a_1_0
- b_4_4·b_3_2 + b_2_2·b_5_5 + b_6_8·a_1_1 + a_4_2·b_3_2 + b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2
- b_6_8·a_1_0
- a_4_22
- a_3_3·a_5_3
- b_3_2·a_5_3 + a_2_1·b_2_23 + b_4_4·a_1_1·a_3_3
- a_3_3·a_5_4
- b_3_2·a_5_4 + b_2_2·a_6_5 + b_4_4·a_1_1·a_3_3 + b_2_2·a_1_1·a_5_4
- b_2_2·a_1_1·a_5_4 + a_2_1·a_6_5
- b_3_2·b_5_5 + b_2_22·b_4_4 + a_3_3·b_5_5 + a_2_1·b_6_8 + a_2_1·b_2_2·b_4_4
+ a_2_1·b_2_23 + b_2_2·a_1_1·a_5_4
- b_6_8·a_1_12 + b_4_4·a_1_1·a_3_3
- a_3_3·b_5_5 + a_4_2·b_4_4 + a_2_1·b_2_2·b_4_4 + a_1_1·a_7_8 + b_4_4·a_1_1·a_3_3
- a_1_0·a_7_8
- b_3_2·b_5_5 + b_2_22·b_4_4 + a_3_3·b_5_5 + a_1_1·b_7_10 + a_4_2·b_4_4 + a_2_1·b_2_2·b_4_4
+ b_4_4·a_1_1·a_3_3 + b_2_2·a_1_1·a_5_4
- a_1_0·b_7_10
- a_4_2·a_5_3
- a_4_2·a_5_4 + a_2_1·b_2_2·a_5_4
- a_6_5·a_3_3
- a_6_5·b_3_2 + b_2_22·a_5_4 + a_2_1·b_4_4·a_3_3
- b_6_8·a_3_3 + b_4_4·a_5_3 + a_2_1·b_2_2·b_5_5
- b_4_4·a_5_4 + b_4_4·a_5_3 + a_4_2·b_5_5 + b_2_2·a_7_8 + b_2_2·b_6_8·a_1_1
+ a_2_1·b_4_4·a_3_3
- a_4_2·b_5_5 + a_2_1·b_2_2·b_5_5 + a_2_1·a_7_8 + a_2_1·b_4_4·a_3_3
- a_1_12·a_7_8
- b_6_8·b_3_2 + b_2_2·b_7_10 + b_2_22·b_5_5 + b_2_23·b_3_2 + b_4_4·a_5_4 + b_4_4·a_5_3
+ b_4_42·a_1_1 + a_4_2·b_5_5 + b_2_2·b_6_8·a_1_1 + a_2_1·b_2_22·b_3_2 + a_4_2·a_5_4 + a_2_1·b_4_4·a_3_3
- a_4_2·b_5_5 + b_2_2·b_6_8·a_1_1 + a_2_1·b_7_10 + a_2_1·b_2_22·b_3_2 + a_2_1·b_4_4·a_3_3
- a_4_2·b_5_5 + a_2_1·b_2_2·b_5_5 + a_8_6·a_1_1
- a_8_6·a_1_0
- a_5_32
- a_5_42
- a_5_3·b_5_5 + b_4_4·a_1_1·b_5_5 + a_2_1·b_4_42 + a_2_1·b_2_22·b_4_4
- a_5_3·a_5_4 + a_4_2·a_6_5
- a_5_3·a_5_4 + a_2_1·b_2_2·a_6_5
- a_3_3·a_7_8
- a_5_4·b_5_5 + a_5_3·b_5_5 + b_4_4·a_6_5 + a_4_2·b_6_8 + a_2_1·b_2_2·b_6_8
+ a_2_1·b_2_22·b_4_4 + a_5_3·a_5_4 + b_4_42·a_1_12 + b_2_2·a_1_1·a_7_8
- a_5_3·b_5_5 + b_3_2·a_7_8 + b_4_4·a_6_5 + a_2_1·b_2_2·b_6_8 + a_2_1·b_2_22·b_4_4
- a_5_3·b_5_5 + a_3_3·b_7_10 + a_2_1·b_2_22·b_4_4 + b_4_42·a_1_12
- b_3_2·b_7_10 + b_2_22·b_6_8 + b_2_23·b_4_4 + b_2_25 + b_4_4·a_6_5 + a_2_1·b_4_42
+ a_2_1·b_2_2·b_6_8 + a_2_1·b_2_22·b_4_4 + a_2_1·b_2_24
- b_5_52 + b_2_2·b_4_42 + a_5_3·b_5_5 + a_2_1·b_4_42 + a_2_1·b_2_22·b_4_4
+ b_4_42·a_1_12 + c_8_13·a_1_12
- b_4_4·a_6_5 + a_4_2·b_6_8 + b_2_2·a_8_6 + a_2_1·b_2_22·b_4_4 + a_2_1·b_2_24
+ b_4_42·a_1_12
- a_5_4·b_5_5 + a_5_3·b_5_5 + b_4_4·a_6_5 + a_4_2·b_6_8 + a_2_1·b_2_2·b_6_8
+ a_2_1·b_2_22·b_4_4 + a_5_3·a_5_4 + b_4_42·a_1_12 + a_2_1·a_8_6
- a_5_4·b_5_5 + b_4_4·a_6_5 + a_5_3·a_5_4 + a_1_1·a_9_11 + b_4_42·a_1_12
- a_1_0·a_9_11
- a_6_5·a_5_3 + a_2_1·b_2_22·a_5_4
- a_6_5·a_5_4
- a_4_2·a_7_8 + a_2_1·b_2_2·a_7_8
- a_6_5·b_5_5 + a_4_2·b_7_10 + b_2_22·a_7_8 + a_2_1·b_2_22·b_5_5 + a_2_1·b_2_23·b_3_2
+ a_4_2·a_7_8
- b_6_8·a_5_3 + b_4_42·a_3_3 + a_2_1·b_2_2·b_7_10 + a_2_1·b_2_22·b_5_5
+ a_2_1·b_2_23·b_3_2 + a_4_2·a_7_8
- b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_6_8·a_5_3 + a_6_5·b_5_5
+ b_4_4·a_7_8 + b_4_4·b_6_8·a_1_1 + b_2_22·a_7_8 + a_2_1·b_4_4·b_5_5 + a_2_1·b_2_23·b_3_2 + b_2_2·c_8_13·a_1_1 + c_8_13·a_1_13
- a_8_6·a_3_3
- a_8_6·b_3_2 + b_6_8·a_5_3 + a_6_5·b_5_5 + b_4_42·a_3_3 + a_2_1·b_2_22·b_5_5
+ a_2_1·b_2_23·b_3_2 + a_2_1·b_4_4·a_5_3 + a_2_1·b_2_22·a_5_4
- b_6_8·a_5_4 + b_6_8·a_5_3 + a_6_5·b_5_5 + b_2_2·a_9_11 + a_2_1·b_4_4·b_5_5
+ a_2_1·b_2_22·b_5_5 + a_2_1·b_2_23·b_3_2 + a_4_2·a_7_8
- b_6_8·a_5_3 + a_6_5·b_5_5 + b_4_42·a_3_3 + b_2_22·a_7_8 + a_2_1·a_9_11
+ a_2_1·b_4_4·a_5_3 + a_2_1·b_2_22·a_5_4
- b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_4_4·a_7_8
+ b_4_4·b_6_8·a_1_1 + b_4_42·a_3_3 + a_2_1·b_4_4·b_5_5 + a_2_1·b_2_23·b_3_2 + a_10_12·a_1_1 + a_4_2·a_7_8 + a_2_1·b_2_22·a_5_4 + b_2_2·c_8_13·a_1_1
- b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_6_8·a_5_3 + a_6_5·b_5_5
+ b_4_4·a_7_8 + b_4_4·b_6_8·a_1_1 + b_2_22·a_7_8 + a_2_1·b_4_4·b_5_5 + a_2_1·b_2_23·b_3_2 + a_10_12·a_1_0 + b_2_2·c_8_13·a_1_1
- a_6_52
- a_5_3·b_7_10 + a_4_2·b_4_42 + a_2_1·b_2_2·b_4_42 + a_2_1·b_2_22·b_6_8
+ a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8
- b_6_82 + b_4_43 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4
+ a_4_2·b_4_42 + a_2_1·b_4_4·b_6_8 + a_2_1·b_2_22·b_6_8 + a_2_1·b_2_25 + a_5_4·a_7_8 + a_5_3·a_7_8 + b_2_22·c_8_13
- b_5_5·b_7_10 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4 + b_5_5·a_7_8
+ a_4_2·b_4_42 + a_2_1·b_2_2·b_4_42 + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_4·a_7_8 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8 + a_2_1·b_2_22·a_6_5 + a_2_1·b_2_2·c_8_13 + c_8_13·a_1_1·a_3_3
- a_5_3·a_7_8 + a_4_2·a_8_6
- a_5_4·b_7_10 + a_6_5·b_6_8 + b_2_22·a_8_6 + b_2_23·a_6_5 + a_2_1·b_2_22·b_6_8
+ a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8 + b_4_42·a_1_1·a_3_3 + a_2_1·b_2_22·a_6_5
- a_5_3·a_7_8 + a_2_1·b_2_2·a_8_6
- b_5_5·a_7_8 + b_4_4·a_8_6 + a_4_2·b_4_42 + a_2_1·b_2_23·b_4_4 + a_5_3·a_7_8
+ b_4_4·a_1_1·a_7_8 + b_4_42·a_1_1·a_3_3 + c_8_13·a_1_1·a_3_3
- a_3_3·a_9_11
- a_5_4·a_7_8 + a_5_3·a_7_8 + b_2_2·a_1_1·a_9_11
- a_5_4·b_7_10 + b_3_2·a_9_11 + a_4_2·b_4_42 + b_2_23·a_6_5 + a_2_1·b_2_22·b_6_8
+ a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_4·a_7_8 + a_5_3·a_7_8 + b_4_42·a_1_1·a_3_3
- b_5_5·b_7_10 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4 + b_5_5·a_7_8
+ a_6_5·b_6_8 + b_2_2·a_10_12 + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8 + b_4_42·a_1_1·a_3_3 + c_8_13·a_1_1·a_3_3
- a_5_4·a_7_8 + a_2_1·a_10_12
- b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
+ b_6_8·a_7_8 + b_4_42·a_5_3 + b_4_43·a_1_1 + b_2_23·a_7_8 + a_2_1·b_4_4·b_7_10 + a_2_1·b_2_23·b_5_5 + a_2_1·b_2_24·b_3_2 + a_6_5·a_7_8 + a_2_1·b_4_4·a_7_8 + b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·b_3_2
- a_8_6·a_5_3 + a_2_1·b_2_22·a_7_8
- a_8_6·a_5_4 + a_6_5·a_7_8 + a_2_1·b_2_22·a_7_8 + a_2_1·b_2_23·a_5_4
- a_8_6·b_5_5 + b_2_2·b_4_4·a_7_8 + a_2_1·b_2_2·b_4_4·b_5_5 + a_2_1·b_2_23·b_5_5
+ a_2_1·b_4_4·a_7_8 + a_2_1·b_2_22·a_7_8 + a_2_1·c_8_13·a_3_3
- a_6_5·a_7_8 + a_4_2·a_9_11 + a_2_1·b_2_22·a_7_8
- a_6_5·b_7_10 + b_2_22·a_9_11 + b_2_24·a_5_4 + a_2_1·b_2_2·b_4_4·b_5_5
+ a_2_1·b_2_22·b_7_10 + a_6_5·a_7_8 + a_2_1·b_4_4·a_7_8 + a_2_1·b_4_42·a_3_3 + a_2_1·b_2_23·a_5_4
- a_6_5·a_7_8 + a_2_1·b_2_2·a_9_11 + a_2_1·b_2_22·a_7_8
- b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
+ b_4_4·a_9_11 + b_4_43·a_1_1 + b_2_2·b_4_4·a_7_8 + b_2_23·a_7_8 + a_2_1·b_2_24·b_3_2 + a_6_5·a_7_8 + a_2_1·b_4_42·a_3_3 + a_2_1·b_2_22·a_7_8 + b_2_2·c_8_13·b_3_2
- a_10_12·a_3_3 + a_2_1·b_4_42·a_3_3 + a_2_1·c_8_13·a_3_3
- b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
+ a_10_12·b_3_2 + b_6_8·a_7_8 + a_6_5·b_7_10 + b_4_42·a_5_3 + b_4_43·a_1_1 + b_2_24·a_5_4 + a_2_1·b_4_4·b_7_10 + a_2_1·b_2_22·b_7_10 + a_2_1·b_4_4·a_7_8 + a_2_1·b_4_42·a_3_3 + a_2_1·b_2_23·a_5_4 + b_2_2·c_8_13·b_3_2
- a_7_82
- a_7_8·b_7_10 + b_6_8·a_8_6 + a_4_2·b_4_4·b_6_8 + b_2_2·b_4_4·a_8_6 + b_2_23·a_8_6
+ a_2_1·b_2_22·b_4_42 + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_26 + a_6_5·a_8_6 + b_4_43·a_1_12 + a_2_1·b_4_4·a_8_6 + a_2_1·b_2_23·a_6_5 + c_8_13·a_1_1·a_5_4
- a_5_3·a_9_11 + a_6_5·a_8_6 + a_2_1·b_2_23·a_6_5
- a_7_8·b_7_10 + b_6_8·a_8_6 + a_4_2·b_4_4·b_6_8 + b_2_2·b_4_4·a_8_6 + b_2_23·a_8_6
+ a_2_1·b_2_22·b_4_42 + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_26 + a_5_4·a_9_11 + b_4_43·a_1_12 + a_2_1·b_2_23·a_6_5 + c_8_13·a_1_1·a_5_4
- b_7_102 + b_2_2·b_4_43 + b_2_22·b_4_4·b_6_8 + b_2_25·b_4_4 + b_2_27
+ a_4_2·b_4_4·b_6_8 + a_2_1·b_4_43 + a_2_1·b_2_2·b_4_4·b_6_8 + a_2_1·b_2_22·b_4_42 + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_24·b_4_4 + a_6_5·a_8_6 + b_4_4·a_1_1·a_9_11 + a_2_1·b_2_23·a_6_5 + b_2_23·c_8_13 + a_2_1·b_2_22·c_8_13 + b_4_4·c_8_13·a_1_12
- b_5_5·a_9_11 + b_6_8·a_8_6 + b_2_2·b_4_4·a_8_6 + a_2_1·b_2_22·b_4_42
+ a_2_1·b_2_23·b_6_8 + a_2_1·b_2_24·b_4_4 + a_6_5·a_8_6 + a_2_1·b_2_22·a_8_6 + a_2_1·b_2_23·a_6_5 + a_2_1·b_2_22·c_8_13 + b_4_4·c_8_13·a_1_12
- a_6_5·a_8_6 + a_4_2·a_10_12 + a_2_1·b_2_22·a_8_6 + a_2_1·b_2_23·a_6_5
- a_6_5·a_8_6 + a_2_1·b_2_2·a_10_12 + a_2_1·b_2_22·a_8_6 + a_2_1·b_2_23·a_6_5
- b_7_102 + b_2_2·b_4_43 + b_2_22·b_4_4·b_6_8 + b_2_25·b_4_4 + b_2_27 + b_6_8·a_8_6
+ b_4_4·a_10_12 + a_6_5·a_8_6 + a_2_1·b_2_23·a_6_5 + b_2_23·c_8_13 + a_2_1·b_4_4·c_8_13 + c_8_13·a_1_1·a_5_4
- a_8_6·a_7_8 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_23·a_7_8
- a_6_5·a_9_11 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_22·a_9_11 + a_2_1·b_2_24·a_5_4
- a_8_6·b_7_10 + b_2_2·b_4_4·a_9_11 + b_2_24·a_7_8 + a_2_1·b_2_22·b_4_4·b_5_5
+ a_2_1·b_2_23·b_7_10 + a_2_1·b_2_24·b_5_5 + a_6_5·a_9_11 + a_2_1·b_2_24·a_5_4 + a_2_1·b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·a_5_4
- b_6_8·a_9_11 + b_4_42·a_7_8 + b_4_43·a_3_3 + b_2_22·b_4_4·a_7_8 + b_2_24·a_7_8
+ a_2_1·b_4_42·b_5_5 + a_2_1·b_2_2·b_4_4·b_7_10 + a_2_1·b_4_4·a_9_11 + a_2_1·b_4_42·a_5_3 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_24·a_5_4 + b_2_2·c_8_13·a_5_4 + a_2_1·b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·a_5_4
- a_10_12·a_5_3 + a_6_5·a_9_11 + a_2_1·b_4_42·a_5_3 + a_2_1·b_2_2·b_4_4·a_7_8
+ a_2_1·b_2_23·a_7_8 + a_2_1·b_2_24·a_5_4 + a_2_1·c_8_13·a_5_3
- a_10_12·a_5_4 + a_2_1·b_4_42·a_5_3 + a_2_1·c_8_13·a_5_4
- a_10_12·b_5_5 + a_8_6·b_7_10 + b_6_8·a_9_11 + b_4_42·a_7_8 + b_4_43·a_3_3
+ a_2_1·b_2_2·b_4_4·b_7_10 + a_2_1·b_2_23·b_7_10 + a_2_1·b_4_42·a_5_3 + a_2_1·b_2_24·a_5_4 + b_2_2·c_8_13·a_5_4 + a_2_1·c_8_13·b_5_5 + a_2_1·c_8_13·a_5_4
- a_8_62
- a_6_5·a_10_12 + a_2_1·a_6_5·c_8_13
- b_7_10·a_9_11 + b_6_8·a_10_12 + a_4_2·b_4_43 + b_2_22·b_4_4·a_8_6 + b_2_23·a_10_12
+ b_2_24·a_8_6 + a_2_1·b_4_42·b_6_8 + a_2_1·b_2_2·b_4_43 + a_2_1·b_2_24·b_6_8 + a_2_1·b_2_25·b_4_4 + a_7_8·a_9_11 + a_2_1·b_2_2·b_4_4·a_8_6 + a_2_1·b_2_23·a_8_6 + a_2_1·b_6_8·c_8_13 + b_4_4·c_8_13·a_1_1·a_3_3
- b_6_8·a_10_12 + b_4_42·a_8_6 + a_4_2·b_4_43 + b_2_2·b_4_4·a_10_12
+ b_2_22·b_4_4·a_8_6 + b_2_24·a_8_6 + a_2_1·b_4_42·b_6_8 + a_2_1·b_2_22·b_4_4·b_6_8 + a_2_1·b_2_24·b_6_8 + a_2_1·b_2_27 + b_4_42·a_1_1·a_7_8 + b_4_43·a_1_1·a_3_3 + a_2_1·b_2_22·a_10_12 + a_2_1·b_2_24·a_6_5 + b_2_2·a_6_5·c_8_13 + a_2_1·b_6_8·c_8_13 + a_2_1·b_2_2·b_4_4·c_8_13 + a_2_1·a_6_5·c_8_13
- a_7_8·a_9_11 + a_2_1·b_4_4·a_10_12 + a_2_1·a_6_5·c_8_13
- a_8_6·a_9_11 + a_2_1·b_2_22·b_4_4·a_7_8 + a_2_1·b_2_23·a_9_11
+ a_2_1·b_2_2·c_8_13·a_5_4
- a_10_12·a_7_8 + a_2_1·b_4_42·a_7_8 + a_2_1·b_2_2·b_4_4·a_9_11 + a_2_1·b_2_24·a_7_8
+ a_2_1·c_8_13·a_7_8 + a_2_1·b_2_2·c_8_13·a_5_4
- a_10_12·b_7_10 + b_2_2·b_4_42·a_7_8 + b_2_23·b_4_4·a_7_8 + b_2_24·a_9_11
+ a_2_1·b_4_42·b_7_10 + a_2_1·b_2_2·b_4_42·b_5_5 + a_2_1·b_2_22·b_4_4·b_7_10 + a_2_1·b_2_23·b_4_4·b_5_5 + a_2_1·b_2_24·b_7_10 + a_2_1·b_2_25·b_5_5 + a_2_1·b_2_2·b_4_4·a_9_11 + a_2_1·b_2_25·a_5_4 + b_2_22·c_8_13·a_5_4 + a_2_1·c_8_13·b_7_10 + a_2_1·b_4_4·c_8_13·a_3_3 + a_2_1·b_2_2·c_8_13·a_5_4
- a_9_112
- a_8_6·a_10_12 + a_2_1·b_4_42·a_8_6 + a_2_1·b_2_22·b_4_4·a_8_6
+ a_2_1·b_2_23·a_10_12 + a_2_1·b_2_24·a_8_6 + a_2_1·a_8_6·c_8_13 + a_2_1·b_2_2·a_6_5·c_8_13
- a_10_12·a_9_11 + a_2_1·b_4_42·a_9_11 + a_2_1·b_2_23·b_4_4·a_7_8
+ a_2_1·b_2_24·a_9_11 + a_2_1·c_8_13·a_9_11 + a_2_1·b_2_22·c_8_13·a_5_4
- a_10_122
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_13, a Duflot regular element of degree 8
- b_4_4 + b_2_22, an element of degree 4
- b_2_2, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 3, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- a_4_2 → 0, an element of degree 4
- b_4_4 → 0, an element of degree 4
- a_5_3 → 0, an element of degree 5
- a_5_4 → 0, an element of degree 5
- b_5_5 → 0, an element of degree 5
- a_6_5 → 0, an element of degree 6
- b_6_8 → 0, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_10 → 0, an element of degree 7
- a_8_6 → 0, an element of degree 8
- c_8_13 → c_1_08, an element of degree 8
- a_9_11 → 0, an element of degree 9
- a_10_12 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_2 → c_1_23, an element of degree 3
- a_4_2 → 0, an element of degree 4
- b_4_4 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- a_5_3 → 0, an element of degree 5
- a_5_4 → 0, an element of degree 5
- b_5_5 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_5 → 0, an element of degree 6
- b_6_8 → c_1_12·c_1_24 + c_1_16 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_10 → c_1_27 + c_1_14·c_1_23 + c_1_16·c_1_2 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- a_8_6 → 0, an element of degree 8
- c_8_13 → c_1_12·c_1_26 + c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- a_9_11 → 0, an element of degree 9
- a_10_12 → 0, an element of degree 10
|