Cohomology of group number 59 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 16.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t4  −  t3  +  t2  −  t  +  1)

    (t  −  1)3 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-5,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 19 minimal generators of maximal degree 10:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_1, a nilpotent element of degree 2
  4. b_2_2, an element of degree 2
  5. a_3_3, a nilpotent element of degree 3
  6. b_3_2, an element of degree 3
  7. a_4_2, a nilpotent element of degree 4
  8. b_4_4, an element of degree 4
  9. a_5_3, a nilpotent element of degree 5
  10. a_5_4, a nilpotent element of degree 5
  11. b_5_5, an element of degree 5
  12. a_6_5, a nilpotent element of degree 6
  13. b_6_8, an element of degree 6
  14. a_7_8, a nilpotent element of degree 7
  15. b_7_10, an element of degree 7
  16. a_8_6, a nilpotent element of degree 8
  17. c_8_13, a Duflot regular element of degree 8
  18. a_9_11, a nilpotent element of degree 9
  19. a_10_12, a nilpotent element of degree 10

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 136 minimal relations of maximal degree 20:

  1. a_1_02
  2. a_1_0·a_1_1
  3. a_2_1·a_1_1 + a_1_13
  4. a_2_1·a_1_0 + a_1_13
  5. b_2_2·a_1_0 + a_1_13
  6. a_2_12
  7. b_2_2·a_1_12
  8. a_1_0·a_3_3
  9. a_1_1·b_3_2 + a_2_1·b_2_2 + a_1_1·a_3_3
  10. a_1_0·b_3_2
  11. b_2_2·a_3_3 + a_2_1·a_3_3
  12. a_1_12·a_3_3
  13. b_2_22·a_1_1 + a_2_1·b_3_2
  14. b_2_2·a_3_3 + a_4_2·a_1_1
  15. a_4_2·a_1_0
  16. b_4_4·a_1_0
  17. a_3_32
  18. b_3_22 + b_2_23 + a_3_3·b_3_2 + a_2_1·b_2_22
  19. a_2_1·a_4_2
  20. a_3_3·b_3_2 + b_4_4·a_1_12
  21. a_3_3·b_3_2 + a_1_1·a_5_3
  22. a_1_0·a_5_3
  23. a_3_3·b_3_2 + b_2_2·a_4_2 + a_2_1·b_2_22 + a_1_1·a_5_4
  24. a_1_0·a_5_4
  25. a_1_0·b_5_5
  26. a_4_2·a_3_3
  27. b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2 + a_2_1·a_5_3
  28. a_4_2·b_3_2 + a_2_1·b_2_2·b_3_2 + a_2_1·a_5_4
  29. b_2_2·a_5_3 + b_2_2·b_4_4·a_1_1 + a_2_1·b_5_5 + a_2_1·b_2_2·b_3_2
  30. b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2 + a_1_12·b_5_5
  31. a_4_2·b_3_2 + a_2_1·b_2_2·b_3_2 + a_6_5·a_1_1
  32. a_6_5·a_1_0
  33. b_4_4·b_3_2 + b_2_2·b_5_5 + b_6_8·a_1_1 + a_4_2·b_3_2 + b_2_2·a_5_3 + a_2_1·b_2_2·b_3_2
  34. b_6_8·a_1_0
  35. a_4_22
  36. a_3_3·a_5_3
  37. b_3_2·a_5_3 + a_2_1·b_2_23 + b_4_4·a_1_1·a_3_3
  38. a_3_3·a_5_4
  39. b_3_2·a_5_4 + b_2_2·a_6_5 + b_4_4·a_1_1·a_3_3 + b_2_2·a_1_1·a_5_4
  40. b_2_2·a_1_1·a_5_4 + a_2_1·a_6_5
  41. b_3_2·b_5_5 + b_2_22·b_4_4 + a_3_3·b_5_5 + a_2_1·b_6_8 + a_2_1·b_2_2·b_4_4
       + a_2_1·b_2_23 + b_2_2·a_1_1·a_5_4
  42. b_6_8·a_1_12 + b_4_4·a_1_1·a_3_3
  43. a_3_3·b_5_5 + a_4_2·b_4_4 + a_2_1·b_2_2·b_4_4 + a_1_1·a_7_8 + b_4_4·a_1_1·a_3_3
  44. a_1_0·a_7_8
  45. b_3_2·b_5_5 + b_2_22·b_4_4 + a_3_3·b_5_5 + a_1_1·b_7_10 + a_4_2·b_4_4 + a_2_1·b_2_2·b_4_4
       + b_4_4·a_1_1·a_3_3 + b_2_2·a_1_1·a_5_4
  46. a_1_0·b_7_10
  47. a_4_2·a_5_3
  48. a_4_2·a_5_4 + a_2_1·b_2_2·a_5_4
  49. a_6_5·a_3_3
  50. a_6_5·b_3_2 + b_2_22·a_5_4 + a_2_1·b_4_4·a_3_3
  51. b_6_8·a_3_3 + b_4_4·a_5_3 + a_2_1·b_2_2·b_5_5
  52. b_4_4·a_5_4 + b_4_4·a_5_3 + a_4_2·b_5_5 + b_2_2·a_7_8 + b_2_2·b_6_8·a_1_1
       + a_2_1·b_4_4·a_3_3
  53. a_4_2·b_5_5 + a_2_1·b_2_2·b_5_5 + a_2_1·a_7_8 + a_2_1·b_4_4·a_3_3
  54. a_1_12·a_7_8
  55. b_6_8·b_3_2 + b_2_2·b_7_10 + b_2_22·b_5_5 + b_2_23·b_3_2 + b_4_4·a_5_4 + b_4_4·a_5_3
       + b_4_42·a_1_1 + a_4_2·b_5_5 + b_2_2·b_6_8·a_1_1 + a_2_1·b_2_22·b_3_2 + a_4_2·a_5_4
       + a_2_1·b_4_4·a_3_3
  56. a_4_2·b_5_5 + b_2_2·b_6_8·a_1_1 + a_2_1·b_7_10 + a_2_1·b_2_22·b_3_2 + a_2_1·b_4_4·a_3_3
  57. a_4_2·b_5_5 + a_2_1·b_2_2·b_5_5 + a_8_6·a_1_1
  58. a_8_6·a_1_0
  59. a_5_32
  60. a_5_42
  61. a_5_3·b_5_5 + b_4_4·a_1_1·b_5_5 + a_2_1·b_4_42 + a_2_1·b_2_22·b_4_4
  62. a_5_3·a_5_4 + a_4_2·a_6_5
  63. a_5_3·a_5_4 + a_2_1·b_2_2·a_6_5
  64. a_3_3·a_7_8
  65. a_5_4·b_5_5 + a_5_3·b_5_5 + b_4_4·a_6_5 + a_4_2·b_6_8 + a_2_1·b_2_2·b_6_8
       + a_2_1·b_2_22·b_4_4 + a_5_3·a_5_4 + b_4_42·a_1_12 + b_2_2·a_1_1·a_7_8
  66. a_5_3·b_5_5 + b_3_2·a_7_8 + b_4_4·a_6_5 + a_2_1·b_2_2·b_6_8 + a_2_1·b_2_22·b_4_4
  67. a_5_3·b_5_5 + a_3_3·b_7_10 + a_2_1·b_2_22·b_4_4 + b_4_42·a_1_12
  68. b_3_2·b_7_10 + b_2_22·b_6_8 + b_2_23·b_4_4 + b_2_25 + b_4_4·a_6_5 + a_2_1·b_4_42
       + a_2_1·b_2_2·b_6_8 + a_2_1·b_2_22·b_4_4 + a_2_1·b_2_24
  69. b_5_52 + b_2_2·b_4_42 + a_5_3·b_5_5 + a_2_1·b_4_42 + a_2_1·b_2_22·b_4_4
       + b_4_42·a_1_12 + c_8_13·a_1_12
  70. b_4_4·a_6_5 + a_4_2·b_6_8 + b_2_2·a_8_6 + a_2_1·b_2_22·b_4_4 + a_2_1·b_2_24
       + b_4_42·a_1_12
  71. a_5_4·b_5_5 + a_5_3·b_5_5 + b_4_4·a_6_5 + a_4_2·b_6_8 + a_2_1·b_2_2·b_6_8
       + a_2_1·b_2_22·b_4_4 + a_5_3·a_5_4 + b_4_42·a_1_12 + a_2_1·a_8_6
  72. a_5_4·b_5_5 + b_4_4·a_6_5 + a_5_3·a_5_4 + a_1_1·a_9_11 + b_4_42·a_1_12
  73. a_1_0·a_9_11
  74. a_6_5·a_5_3 + a_2_1·b_2_22·a_5_4
  75. a_6_5·a_5_4
  76. a_4_2·a_7_8 + a_2_1·b_2_2·a_7_8
  77. a_6_5·b_5_5 + a_4_2·b_7_10 + b_2_22·a_7_8 + a_2_1·b_2_22·b_5_5 + a_2_1·b_2_23·b_3_2
       + a_4_2·a_7_8
  78. b_6_8·a_5_3 + b_4_42·a_3_3 + a_2_1·b_2_2·b_7_10 + a_2_1·b_2_22·b_5_5
       + a_2_1·b_2_23·b_3_2 + a_4_2·a_7_8
  79. b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_6_8·a_5_3 + a_6_5·b_5_5
       + b_4_4·a_7_8 + b_4_4·b_6_8·a_1_1 + b_2_22·a_7_8 + a_2_1·b_4_4·b_5_5
       + a_2_1·b_2_23·b_3_2 + b_2_2·c_8_13·a_1_1 + c_8_13·a_1_13
  80. a_8_6·a_3_3
  81. a_8_6·b_3_2 + b_6_8·a_5_3 + a_6_5·b_5_5 + b_4_42·a_3_3 + a_2_1·b_2_22·b_5_5
       + a_2_1·b_2_23·b_3_2 + a_2_1·b_4_4·a_5_3 + a_2_1·b_2_22·a_5_4
  82. b_6_8·a_5_4 + b_6_8·a_5_3 + a_6_5·b_5_5 + b_2_2·a_9_11 + a_2_1·b_4_4·b_5_5
       + a_2_1·b_2_22·b_5_5 + a_2_1·b_2_23·b_3_2 + a_4_2·a_7_8
  83. b_6_8·a_5_3 + a_6_5·b_5_5 + b_4_42·a_3_3 + b_2_22·a_7_8 + a_2_1·a_9_11
       + a_2_1·b_4_4·a_5_3 + a_2_1·b_2_22·a_5_4
  84. b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_4_4·a_7_8
       + b_4_4·b_6_8·a_1_1 + b_4_42·a_3_3 + a_2_1·b_4_4·b_5_5 + a_2_1·b_2_23·b_3_2
       + a_10_12·a_1_1 + a_4_2·a_7_8 + a_2_1·b_2_22·a_5_4 + b_2_2·c_8_13·a_1_1
  85. b_6_8·b_5_5 + b_4_4·b_7_10 + b_2_2·b_4_4·b_5_5 + b_2_23·b_5_5 + b_6_8·a_5_3 + a_6_5·b_5_5
       + b_4_4·a_7_8 + b_4_4·b_6_8·a_1_1 + b_2_22·a_7_8 + a_2_1·b_4_4·b_5_5
       + a_2_1·b_2_23·b_3_2 + a_10_12·a_1_0 + b_2_2·c_8_13·a_1_1
  86. a_6_52
  87. a_5_3·b_7_10 + a_4_2·b_4_42 + a_2_1·b_2_2·b_4_42 + a_2_1·b_2_22·b_6_8
       + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8
  88. b_6_82 + b_4_43 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4
       + a_4_2·b_4_42 + a_2_1·b_4_4·b_6_8 + a_2_1·b_2_22·b_6_8 + a_2_1·b_2_25 + a_5_4·a_7_8
       + a_5_3·a_7_8 + b_2_22·c_8_13
  89. b_5_5·b_7_10 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4 + b_5_5·a_7_8
       + a_4_2·b_4_42 + a_2_1·b_2_2·b_4_42 + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25
       + a_5_4·a_7_8 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8 + a_2_1·b_2_22·a_6_5
       + a_2_1·b_2_2·c_8_13 + c_8_13·a_1_1·a_3_3
  90. a_5_3·a_7_8 + a_4_2·a_8_6
  91. a_5_4·b_7_10 + a_6_5·b_6_8 + b_2_22·a_8_6 + b_2_23·a_6_5 + a_2_1·b_2_22·b_6_8
       + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8 + b_4_4·a_1_1·a_7_8
       + b_4_42·a_1_1·a_3_3 + a_2_1·b_2_22·a_6_5
  92. a_5_3·a_7_8 + a_2_1·b_2_2·a_8_6
  93. b_5_5·a_7_8 + b_4_4·a_8_6 + a_4_2·b_4_42 + a_2_1·b_2_23·b_4_4 + a_5_3·a_7_8
       + b_4_4·a_1_1·a_7_8 + b_4_42·a_1_1·a_3_3 + c_8_13·a_1_1·a_3_3
  94. a_3_3·a_9_11
  95. a_5_4·a_7_8 + a_5_3·a_7_8 + b_2_2·a_1_1·a_9_11
  96. a_5_4·b_7_10 + b_3_2·a_9_11 + a_4_2·b_4_42 + b_2_23·a_6_5 + a_2_1·b_2_22·b_6_8
       + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_4·a_7_8 + a_5_3·a_7_8 + b_4_42·a_1_1·a_3_3
  97. b_5_5·b_7_10 + b_2_2·b_4_4·b_6_8 + b_2_22·b_4_42 + b_2_24·b_4_4 + b_5_5·a_7_8
       + a_6_5·b_6_8 + b_2_2·a_10_12 + a_2_1·b_2_23·b_4_4 + a_2_1·b_2_25 + a_5_3·a_7_8
       + b_4_4·a_1_1·a_7_8 + b_4_42·a_1_1·a_3_3 + c_8_13·a_1_1·a_3_3
  98. a_5_4·a_7_8 + a_2_1·a_10_12
  99. b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
       + b_6_8·a_7_8 + b_4_42·a_5_3 + b_4_43·a_1_1 + b_2_23·a_7_8 + a_2_1·b_4_4·b_7_10
       + a_2_1·b_2_23·b_5_5 + a_2_1·b_2_24·b_3_2 + a_6_5·a_7_8 + a_2_1·b_4_4·a_7_8
       + b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·b_3_2
  100. a_8_6·a_5_3 + a_2_1·b_2_22·a_7_8
  101. a_8_6·a_5_4 + a_6_5·a_7_8 + a_2_1·b_2_22·a_7_8 + a_2_1·b_2_23·a_5_4
  102. a_8_6·b_5_5 + b_2_2·b_4_4·a_7_8 + a_2_1·b_2_2·b_4_4·b_5_5 + a_2_1·b_2_23·b_5_5
       + a_2_1·b_4_4·a_7_8 + a_2_1·b_2_22·a_7_8 + a_2_1·c_8_13·a_3_3
  103. a_6_5·a_7_8 + a_4_2·a_9_11 + a_2_1·b_2_22·a_7_8
  104. a_6_5·b_7_10 + b_2_22·a_9_11 + b_2_24·a_5_4 + a_2_1·b_2_2·b_4_4·b_5_5
       + a_2_1·b_2_22·b_7_10 + a_6_5·a_7_8 + a_2_1·b_4_4·a_7_8 + a_2_1·b_4_42·a_3_3
       + a_2_1·b_2_23·a_5_4
  105. a_6_5·a_7_8 + a_2_1·b_2_2·a_9_11 + a_2_1·b_2_22·a_7_8
  106. b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
       + b_4_4·a_9_11 + b_4_43·a_1_1 + b_2_2·b_4_4·a_7_8 + b_2_23·a_7_8 + a_2_1·b_2_24·b_3_2
       + a_6_5·a_7_8 + a_2_1·b_4_42·a_3_3 + a_2_1·b_2_22·a_7_8 + b_2_2·c_8_13·b_3_2
  107. a_10_12·a_3_3 + a_2_1·b_4_42·a_3_3 + a_2_1·c_8_13·a_3_3
  108. b_6_8·b_7_10 + b_4_42·b_5_5 + b_2_22·b_4_4·b_5_5 + b_2_23·b_7_10 + b_2_25·b_3_2
       + a_10_12·b_3_2 + b_6_8·a_7_8 + a_6_5·b_7_10 + b_4_42·a_5_3 + b_4_43·a_1_1
       + b_2_24·a_5_4 + a_2_1·b_4_4·b_7_10 + a_2_1·b_2_22·b_7_10 + a_2_1·b_4_4·a_7_8
       + a_2_1·b_4_42·a_3_3 + a_2_1·b_2_23·a_5_4 + b_2_2·c_8_13·b_3_2
  109. a_7_82
  110. a_7_8·b_7_10 + b_6_8·a_8_6 + a_4_2·b_4_4·b_6_8 + b_2_2·b_4_4·a_8_6 + b_2_23·a_8_6
       + a_2_1·b_2_22·b_4_42 + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_26 + a_6_5·a_8_6
       + b_4_43·a_1_12 + a_2_1·b_4_4·a_8_6 + a_2_1·b_2_23·a_6_5 + c_8_13·a_1_1·a_5_4
  111. a_5_3·a_9_11 + a_6_5·a_8_6 + a_2_1·b_2_23·a_6_5
  112. a_7_8·b_7_10 + b_6_8·a_8_6 + a_4_2·b_4_4·b_6_8 + b_2_2·b_4_4·a_8_6 + b_2_23·a_8_6
       + a_2_1·b_2_22·b_4_42 + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_26 + a_5_4·a_9_11
       + b_4_43·a_1_12 + a_2_1·b_2_23·a_6_5 + c_8_13·a_1_1·a_5_4
  113. b_7_102 + b_2_2·b_4_43 + b_2_22·b_4_4·b_6_8 + b_2_25·b_4_4 + b_2_27
       + a_4_2·b_4_4·b_6_8 + a_2_1·b_4_43 + a_2_1·b_2_2·b_4_4·b_6_8 + a_2_1·b_2_22·b_4_42
       + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_24·b_4_4 + a_6_5·a_8_6 + b_4_4·a_1_1·a_9_11
       + a_2_1·b_2_23·a_6_5 + b_2_23·c_8_13 + a_2_1·b_2_22·c_8_13 + b_4_4·c_8_13·a_1_12
  114. b_5_5·a_9_11 + b_6_8·a_8_6 + b_2_2·b_4_4·a_8_6 + a_2_1·b_2_22·b_4_42
       + a_2_1·b_2_23·b_6_8 + a_2_1·b_2_24·b_4_4 + a_6_5·a_8_6 + a_2_1·b_2_22·a_8_6
       + a_2_1·b_2_23·a_6_5 + a_2_1·b_2_22·c_8_13 + b_4_4·c_8_13·a_1_12
  115. a_6_5·a_8_6 + a_4_2·a_10_12 + a_2_1·b_2_22·a_8_6 + a_2_1·b_2_23·a_6_5
  116. a_6_5·a_8_6 + a_2_1·b_2_2·a_10_12 + a_2_1·b_2_22·a_8_6 + a_2_1·b_2_23·a_6_5
  117. b_7_102 + b_2_2·b_4_43 + b_2_22·b_4_4·b_6_8 + b_2_25·b_4_4 + b_2_27 + b_6_8·a_8_6
       + b_4_4·a_10_12 + a_6_5·a_8_6 + a_2_1·b_2_23·a_6_5 + b_2_23·c_8_13 + a_2_1·b_4_4·c_8_13
       + c_8_13·a_1_1·a_5_4
  118. a_8_6·a_7_8 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_23·a_7_8
  119. a_6_5·a_9_11 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_22·a_9_11 + a_2_1·b_2_24·a_5_4
  120. a_8_6·b_7_10 + b_2_2·b_4_4·a_9_11 + b_2_24·a_7_8 + a_2_1·b_2_22·b_4_4·b_5_5
       + a_2_1·b_2_23·b_7_10 + a_2_1·b_2_24·b_5_5 + a_6_5·a_9_11 + a_2_1·b_2_24·a_5_4
       + a_2_1·b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·a_5_4
  121. b_6_8·a_9_11 + b_4_42·a_7_8 + b_4_43·a_3_3 + b_2_22·b_4_4·a_7_8 + b_2_24·a_7_8
       + a_2_1·b_4_42·b_5_5 + a_2_1·b_2_2·b_4_4·b_7_10 + a_2_1·b_4_4·a_9_11
       + a_2_1·b_4_42·a_5_3 + a_2_1·b_2_2·b_4_4·a_7_8 + a_2_1·b_2_24·a_5_4
       + b_2_2·c_8_13·a_5_4 + a_2_1·b_2_2·c_8_13·b_3_2 + a_2_1·c_8_13·a_5_4
  122. a_10_12·a_5_3 + a_6_5·a_9_11 + a_2_1·b_4_42·a_5_3 + a_2_1·b_2_2·b_4_4·a_7_8
       + a_2_1·b_2_23·a_7_8 + a_2_1·b_2_24·a_5_4 + a_2_1·c_8_13·a_5_3
  123. a_10_12·a_5_4 + a_2_1·b_4_42·a_5_3 + a_2_1·c_8_13·a_5_4
  124. a_10_12·b_5_5 + a_8_6·b_7_10 + b_6_8·a_9_11 + b_4_42·a_7_8 + b_4_43·a_3_3
       + a_2_1·b_2_2·b_4_4·b_7_10 + a_2_1·b_2_23·b_7_10 + a_2_1·b_4_42·a_5_3
       + a_2_1·b_2_24·a_5_4 + b_2_2·c_8_13·a_5_4 + a_2_1·c_8_13·b_5_5 + a_2_1·c_8_13·a_5_4
  125. a_8_62
  126. a_6_5·a_10_12 + a_2_1·a_6_5·c_8_13
  127. b_7_10·a_9_11 + b_6_8·a_10_12 + a_4_2·b_4_43 + b_2_22·b_4_4·a_8_6 + b_2_23·a_10_12
       + b_2_24·a_8_6 + a_2_1·b_4_42·b_6_8 + a_2_1·b_2_2·b_4_43 + a_2_1·b_2_24·b_6_8
       + a_2_1·b_2_25·b_4_4 + a_7_8·a_9_11 + a_2_1·b_2_2·b_4_4·a_8_6 + a_2_1·b_2_23·a_8_6
       + a_2_1·b_6_8·c_8_13 + b_4_4·c_8_13·a_1_1·a_3_3
  128. b_6_8·a_10_12 + b_4_42·a_8_6 + a_4_2·b_4_43 + b_2_2·b_4_4·a_10_12
       + b_2_22·b_4_4·a_8_6 + b_2_24·a_8_6 + a_2_1·b_4_42·b_6_8 + a_2_1·b_2_22·b_4_4·b_6_8
       + a_2_1·b_2_24·b_6_8 + a_2_1·b_2_27 + b_4_42·a_1_1·a_7_8 + b_4_43·a_1_1·a_3_3
       + a_2_1·b_2_22·a_10_12 + a_2_1·b_2_24·a_6_5 + b_2_2·a_6_5·c_8_13 + a_2_1·b_6_8·c_8_13
       + a_2_1·b_2_2·b_4_4·c_8_13 + a_2_1·a_6_5·c_8_13
  129. a_7_8·a_9_11 + a_2_1·b_4_4·a_10_12 + a_2_1·a_6_5·c_8_13
  130. a_8_6·a_9_11 + a_2_1·b_2_22·b_4_4·a_7_8 + a_2_1·b_2_23·a_9_11
       + a_2_1·b_2_2·c_8_13·a_5_4
  131. a_10_12·a_7_8 + a_2_1·b_4_42·a_7_8 + a_2_1·b_2_2·b_4_4·a_9_11 + a_2_1·b_2_24·a_7_8
       + a_2_1·c_8_13·a_7_8 + a_2_1·b_2_2·c_8_13·a_5_4
  132. a_10_12·b_7_10 + b_2_2·b_4_42·a_7_8 + b_2_23·b_4_4·a_7_8 + b_2_24·a_9_11
       + a_2_1·b_4_42·b_7_10 + a_2_1·b_2_2·b_4_42·b_5_5 + a_2_1·b_2_22·b_4_4·b_7_10
       + a_2_1·b_2_23·b_4_4·b_5_5 + a_2_1·b_2_24·b_7_10 + a_2_1·b_2_25·b_5_5
       + a_2_1·b_2_2·b_4_4·a_9_11 + a_2_1·b_2_25·a_5_4 + b_2_22·c_8_13·a_5_4
       + a_2_1·c_8_13·b_7_10 + a_2_1·b_4_4·c_8_13·a_3_3 + a_2_1·b_2_2·c_8_13·a_5_4
  133. a_9_112
  134. a_8_6·a_10_12 + a_2_1·b_4_42·a_8_6 + a_2_1·b_2_22·b_4_4·a_8_6
       + a_2_1·b_2_23·a_10_12 + a_2_1·b_2_24·a_8_6 + a_2_1·a_8_6·c_8_13
       + a_2_1·b_2_2·a_6_5·c_8_13
  135. a_10_12·a_9_11 + a_2_1·b_4_42·a_9_11 + a_2_1·b_2_23·b_4_4·a_7_8
       + a_2_1·b_2_24·a_9_11 + a_2_1·c_8_13·a_9_11 + a_2_1·b_2_22·c_8_13·a_5_4
  136. a_10_122


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 20.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_13, a Duflot regular element of degree 8
    2. b_4_4 + b_2_22, an element of degree 4
    3. b_2_2, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, 3, 9, 11].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_20, an element of degree 2
  5. a_3_30, an element of degree 3
  6. b_3_20, an element of degree 3
  7. a_4_20, an element of degree 4
  8. b_4_40, an element of degree 4
  9. a_5_30, an element of degree 5
  10. a_5_40, an element of degree 5
  11. b_5_50, an element of degree 5
  12. a_6_50, an element of degree 6
  13. b_6_80, an element of degree 6
  14. a_7_80, an element of degree 7
  15. b_7_100, an element of degree 7
  16. a_8_60, an element of degree 8
  17. c_8_13c_1_08, an element of degree 8
  18. a_9_110, an element of degree 9
  19. a_10_120, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. b_2_2c_1_22, an element of degree 2
  5. a_3_30, an element of degree 3
  6. b_3_2c_1_23, an element of degree 3
  7. a_4_20, an element of degree 4
  8. b_4_4c_1_12·c_1_22 + c_1_14, an element of degree 4
  9. a_5_30, an element of degree 5
  10. a_5_40, an element of degree 5
  11. b_5_5c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  12. a_6_50, an element of degree 6
  13. b_6_8c_1_12·c_1_24 + c_1_16 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
  14. a_7_80, an element of degree 7
  15. b_7_10c_1_27 + c_1_14·c_1_23 + c_1_16·c_1_2 + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
  16. a_8_60, an element of degree 8
  17. c_8_13c_1_12·c_1_26 + c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  18. a_9_110, an element of degree 9
  19. a_10_120, an element of degree 10


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009