Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 590 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 − t3 + t + 1) |
| (t + 1) · (t − 1)3 · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_4_9, a nilpotent element of degree 4
- b_5_15, an element of degree 5
- a_6_15, a nilpotent element of degree 6
- a_7_20, a nilpotent element of degree 7
- b_7_22, an element of degree 7
- b_8_27, an element of degree 8
- c_8_28, a Duflot regular element of degree 8
Ring relations
There are 50 minimal relations of maximal degree 16:
- a_1_12 + a_1_02
- a_1_0·a_1_1
- a_1_0·b_1_2
- b_2_3·a_1_0
- b_2_4·b_1_2 + b_2_3·b_1_2 + b_2_5·a_1_1 + b_2_4·a_1_1 + b_2_4·a_1_0 + b_2_3·a_1_1
- b_2_3·b_1_22 + b_2_32 + b_2_5·a_1_1·b_1_2 + b_2_3·a_1_1·b_1_2
- b_2_52·a_1_1 + b_2_4·b_2_5·a_1_1 + b_2_3·b_2_5·a_1_1
- a_4_9·b_1_2 + b_2_3·b_2_4·a_1_1
- a_4_9·a_1_1
- b_2_3·b_2_4·a_1_1 + b_2_32·a_1_1 + a_4_9·a_1_0
- b_2_3·a_4_9 + b_2_32·a_1_1·b_1_2
- b_1_2·b_5_15 + b_2_3·b_2_52 + b_2_3·b_2_4·b_2_5 + b_2_32·b_2_5 + b_2_33
- a_1_1·b_5_15 + b_2_32·a_1_1·b_1_2
- b_2_3·b_5_15 + b_2_3·b_2_52·b_1_2 + b_2_33·b_1_2 + b_2_4·b_2_52·a_1_0
+ b_2_42·b_2_5·a_1_0 + b_2_32·b_2_5·a_1_1 + b_2_33·a_1_1 + b_2_5·a_4_9·a_1_0 + b_2_4·a_4_9·a_1_0
- a_6_15·a_1_1 + b_2_5·a_4_9·a_1_0 + b_2_4·a_4_9·a_1_0
- a_6_15·a_1_0 + b_2_5·a_4_9·a_1_0
- a_4_92
- b_2_3·b_2_42·b_2_5 + b_2_3·b_2_43 + b_2_33·b_2_5 + b_2_34 + b_2_5·a_1_0·b_5_15
+ b_2_52·a_4_9 + b_2_4·a_6_15 + b_2_3·a_6_15 + b_2_32·b_2_5·a_1_1·b_1_2
- b_1_2·a_7_20 + a_6_15·b_1_22 + b_2_3·a_6_15 + b_2_33·a_1_1·b_1_2
- a_1_1·a_7_20
- a_1_0·a_7_20
- b_1_2·b_7_22 + b_2_33·b_2_5 + b_2_5·a_1_0·b_5_15 + b_2_52·a_4_9 + b_2_4·b_2_5·a_4_9
+ b_2_3·a_6_15
- a_1_1·b_7_22 + b_2_32·b_2_5·a_1_1·b_1_2
- a_1_0·b_7_22 + b_2_5·a_1_0·b_5_15 + b_2_52·a_4_9 + b_2_4·b_2_5·a_4_9
+ b_2_32·b_2_5·a_1_1·b_1_2
- b_2_3·a_7_20 + b_2_34·a_1_1 + b_2_4·b_2_5·a_4_9·a_1_0 + b_2_42·a_4_9·a_1_0
- a_4_9·b_5_15 + b_2_4·a_7_20 + b_2_42·b_2_52·a_1_0 + b_2_43·b_2_5·a_1_1
+ b_2_44·a_1_1 + b_2_44·a_1_0 + b_2_33·b_2_5·a_1_1 + b_2_34·a_1_1
- b_2_3·b_7_22 + b_2_33·b_2_5·b_1_2 + a_4_9·b_5_15 + b_2_4·b_2_53·a_1_0
+ b_2_42·b_2_52·a_1_0 + b_2_3·a_6_15·b_1_2 + b_2_34·a_1_1 + b_2_4·b_2_5·a_4_9·a_1_0
- b_8_27·b_1_2 + b_2_54·b_1_2 + b_2_34·b_1_2 + a_4_9·b_5_15 + b_2_4·b_2_53·a_1_0
+ b_2_42·b_2_52·a_1_0 + b_2_43·b_2_5·a_1_0 + b_2_3·a_6_15·b_1_2 + b_2_33·b_2_5·a_1_1 + b_2_4·b_2_5·a_4_9·a_1_0 + b_2_42·a_4_9·a_1_0
- b_8_27·a_1_1 + b_2_34·a_1_1 + b_2_42·a_4_9·a_1_0
- b_8_27·a_1_0 + a_4_9·b_5_15 + b_2_54·a_1_0 + b_2_4·b_2_53·a_1_0
+ b_2_42·b_2_52·a_1_0 + b_2_43·b_2_5·a_1_0 + b_2_34·a_1_1
- a_4_9·a_6_15
- b_5_152 + b_2_4·b_2_54 + b_2_43·b_2_52 + b_2_33·b_2_52 + b_2_35
+ b_2_53·a_4_9 + b_2_4·b_2_5·a_1_0·b_5_15 + b_2_4·b_2_5·a_6_15 + b_2_42·a_1_0·b_5_15 + b_2_3·b_2_5·a_6_15 + b_2_33·b_2_5·a_1_1·b_1_2 + b_2_34·a_1_1·b_1_2 + c_8_28·a_1_02
- b_2_3·b_8_27 + b_2_3·b_2_54 + b_2_3·b_2_44 + b_2_42·a_6_15 + b_2_42·b_2_5·a_4_9
+ b_2_34·a_1_1·b_1_2
- a_4_9·a_7_20 + b_2_42·b_2_5·a_4_9·a_1_0 + b_2_43·a_4_9·a_1_0
- a_6_15·b_5_15 + b_2_52·a_7_20 + b_2_52·a_6_15·b_1_2 + b_2_55·a_1_0
+ b_2_4·b_2_54·a_1_0 + b_2_43·b_2_52·a_1_0 + b_2_44·b_2_5·a_1_0 + b_2_32·a_6_15·b_1_2 + b_2_42·b_2_5·a_4_9·a_1_0 + b_2_43·a_4_9·a_1_0
- a_4_9·b_7_22 + b_2_4·b_2_5·a_7_20 + b_2_4·b_2_54·a_1_0 + b_2_42·b_2_53·a_1_0
+ b_2_43·b_2_52·a_1_0 + b_2_44·b_2_5·a_1_0 + b_2_43·a_4_9·a_1_0
- a_6_152
- b_5_15·a_7_20 + b_2_54·a_4_9 + b_2_4·b_2_53·a_4_9 + b_2_42·b_2_5·a_6_15
+ b_2_42·b_2_52·a_4_9 + b_2_32·b_2_5·a_6_15 + b_2_35·a_1_1·b_1_2
- a_4_9·b_8_27 + b_2_54·a_4_9 + b_2_42·b_2_5·a_1_0·b_5_15 + b_2_42·b_2_5·a_6_15
+ b_2_42·b_2_52·a_4_9 + b_2_43·a_1_0·b_5_15 + b_2_43·b_2_5·a_4_9 + b_2_32·b_2_5·a_6_15 + b_2_34·b_2_5·a_1_1·b_1_2 + b_2_35·a_1_1·b_1_2
- b_5_15·b_7_22 + b_2_52·b_8_27 + b_2_56 + b_2_4·b_2_5·b_8_27 + b_2_4·b_2_55
+ b_2_43·b_2_53 + b_2_44·b_2_52 + b_2_4·b_2_52·a_6_15 + b_2_4·b_2_53·a_4_9 + b_2_42·b_2_5·a_1_0·b_5_15 + b_2_3·b_2_52·a_6_15 + b_2_32·b_2_5·a_6_15 + b_2_33·a_6_15 + b_2_34·b_2_5·a_1_1·b_1_2 + b_2_5·c_8_28·a_1_02
- a_6_15·a_7_20 + b_2_43·b_2_5·a_4_9·a_1_0 + b_2_44·a_4_9·a_1_0
- a_6_15·b_7_22 + b_2_4·b_2_52·a_7_20 + b_2_42·b_2_5·a_7_20 + b_2_43·a_7_20
+ b_2_43·b_2_53·a_1_0 + b_2_44·b_2_52·a_1_0 + b_2_45·b_2_5·a_1_1 + b_2_45·b_2_5·a_1_0 + b_2_46·a_1_1 + b_2_46·a_1_0 + b_2_32·b_2_5·a_6_15·b_1_2
- b_8_27·b_5_15 + b_2_54·b_5_15 + b_2_4·b_2_52·b_7_22 + b_2_42·b_2_5·b_7_22
+ b_2_43·b_2_5·b_5_15 + b_2_35·b_2_5·b_1_2 + b_2_36·b_1_2 + b_2_42·b_2_5·a_7_20 + b_2_42·b_2_54·a_1_0 + b_2_45·b_2_5·a_1_0 + b_2_32·b_2_5·a_6_15·b_1_2 + b_2_33·a_6_15·b_1_2 + b_2_43·b_2_5·a_4_9·a_1_0 + a_4_9·c_8_28·a_1_0
- a_7_202
- a_7_20·b_7_22 + b_2_4·b_2_53·a_6_15 + b_2_42·b_2_52·a_6_15 + b_2_43·b_2_52·a_4_9
+ b_2_44·b_2_5·a_4_9 + b_2_3·b_2_53·a_6_15 + b_2_32·b_2_52·a_6_15
- b_7_222 + b_2_42·b_2_55 + b_2_44·b_2_53 + b_2_32·b_2_55 + b_2_34·b_2_53
+ b_2_35·b_2_52
- a_6_15·b_8_27 + b_2_54·a_6_15 + b_2_4·b_2_54·a_4_9 + b_2_42·b_2_53·a_4_9
+ b_2_43·b_2_5·a_1_0·b_5_15 + b_2_44·a_1_0·b_5_15 + b_2_44·b_2_5·a_4_9 + b_2_34·a_6_15 + b_2_35·b_2_5·a_1_1·b_1_2
- b_8_27·a_7_20 + b_2_54·a_7_20 + b_2_4·b_2_53·a_7_20 + b_2_4·b_2_56·a_1_0
+ b_2_42·b_2_55·a_1_0 + b_2_43·b_2_5·a_7_20 + b_2_44·a_7_20 + b_2_44·b_2_53·a_1_0 + b_2_46·b_2_5·a_1_1 + b_2_47·a_1_1 + b_2_47·a_1_0 + b_2_37·a_1_1 + b_2_45·a_4_9·a_1_0
- b_8_27·b_7_22 + b_2_54·b_7_22 + b_2_42·b_2_53·b_5_15 + b_2_43·b_2_5·b_7_22
+ b_2_43·b_2_52·b_5_15 + b_2_32·b_2_55·b_1_2 + b_2_33·b_2_54·b_1_2 + b_2_34·b_2_53·b_1_2 + b_2_36·b_2_5·b_1_2 + b_2_42·b_2_55·a_1_0 + b_2_43·b_2_54·a_1_0 + b_2_34·a_6_15·b_1_2 + b_2_36·b_2_5·a_1_1 + b_2_44·b_2_5·a_4_9·a_1_0 + b_2_5·a_4_9·c_8_28·a_1_0
- b_8_272 + b_2_58 + b_2_43·b_2_55 + b_2_45·b_2_53 + b_2_46·b_2_52
+ b_2_33·b_2_55 + b_2_35·b_2_53 + b_2_36·b_2_52 + b_2_38 + b_2_42·b_2_54·a_4_9 + b_2_43·b_2_52·a_6_15 + b_2_43·b_2_53·a_4_9 + b_2_44·b_2_5·a_1_0·b_5_15 + b_2_44·b_2_5·a_6_15 + b_2_45·a_1_0·b_5_15 + b_2_33·b_2_52·a_6_15 + b_2_34·b_2_5·a_6_15
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_28, a Duflot regular element of degree 8
- b_1_24 + b_2_52 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_2_5 + b_2_3·b_2_4, an element of degree 4
- b_2_5, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_4_9 → 0, an element of degree 4
- b_5_15 → 0, an element of degree 5
- a_6_15 → 0, an element of degree 6
- a_7_20 → 0, an element of degree 7
- b_7_22 → 0, an element of degree 7
- b_8_27 → 0, an element of degree 8
- c_8_28 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- a_4_9 → 0, an element of degree 4
- b_5_15 → 0, an element of degree 5
- a_6_15 → 0, an element of degree 6
- a_7_20 → 0, an element of degree 7
- b_7_22 → 0, an element of degree 7
- b_8_27 → c_1_28 + c_1_14·c_1_24, an element of degree 8
- c_8_28 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_22, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_4_9 → 0, an element of degree 4
- b_5_15 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_15 → 0, an element of degree 6
- a_7_20 → 0, an element of degree 7
- b_7_22 → c_1_1·c_1_26 + c_1_12·c_1_25, an element of degree 7
- b_8_27 → c_1_28 + c_1_14·c_1_24 + c_1_18, an element of degree 8
- c_8_28 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → c_1_12, an element of degree 2
- a_4_9 → 0, an element of degree 4
- b_5_15 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_15 → 0, an element of degree 6
- a_7_20 → 0, an element of degree 7
- b_7_22 → c_1_13·c_1_24 + c_1_15·c_1_22, an element of degree 7
- b_8_27 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_18, an element of degree 8
- c_8_28 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|