Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 600 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_3_9, an element of degree 3
- b_5_17, an element of degree 5
- a_6_14, a nilpotent element of degree 6
- a_7_11, a nilpotent element of degree 7
- c_8_30, a Duflot regular element of degree 8
Ring relations
There are 30 minimal relations of maximal degree 14:
- a_1_12 + a_1_02
- a_1_0·a_1_1
- a_1_0·b_1_2
- b_2_3·a_1_0
- b_2_4·b_1_2 + b_2_3·b_1_2 + b_2_5·a_1_1 + b_2_3·a_1_1
- b_2_3·b_1_22 + b_2_32 + b_2_5·a_1_1·b_1_2 + b_2_5·a_1_02
- b_1_2·b_3_9 + b_2_3·b_2_5 + b_2_32 + b_2_5·a_1_1·b_1_2 + b_2_3·a_1_1·b_1_2
- b_2_3·b_1_22 + b_2_3·b_2_4 + a_1_1·b_3_9 + b_2_5·a_1_1·b_1_2
- b_2_52·a_1_1 + b_2_4·b_2_5·a_1_1 + b_2_3·b_2_5·a_1_1 + a_1_02·b_3_9
- b_2_3·b_3_9 + b_2_3·b_2_5·b_1_2 + b_2_32·b_1_2 + b_2_52·a_1_1 + b_2_4·b_2_5·a_1_1
+ b_2_3·b_2_5·a_1_1 + b_2_32·a_1_1
- b_1_2·b_5_17 + b_2_3·b_2_52 + b_2_33 + b_2_3·b_2_5·a_1_1·b_1_2
- a_1_1·b_5_17 + b_2_4·a_1_1·b_3_9 + b_2_3·b_2_5·a_1_1·b_1_2 + b_2_4·b_2_5·a_1_02
- b_3_92 + b_2_4·b_2_52 + b_2_42·b_2_5 + b_2_32·b_2_5 + b_2_33 + a_1_0·b_5_17
+ b_2_5·a_1_1·b_3_9
- b_2_3·b_5_17 + b_2_3·b_2_52·b_1_2 + b_2_33·b_1_2 + b_2_5·a_1_02·b_3_9
+ b_2_4·a_1_02·b_3_9
- a_6_14·a_1_1 + b_2_5·a_1_02·b_3_9 + b_2_4·a_1_02·b_3_9
- a_6_14·a_1_0
- b_2_5·a_1_0·b_5_17 + b_2_52·a_1_0·b_3_9 + b_2_4·a_6_14 + b_2_4·b_2_5·a_1_1·b_3_9
+ b_2_42·a_1_1·b_3_9 + b_2_3·a_6_14 + b_2_33·a_1_1·b_1_2
- b_1_2·a_7_11 + a_6_14·b_1_22 + b_2_3·a_6_14 + b_2_33·a_1_1·b_1_2
- a_1_1·a_7_11
- a_1_0·a_7_11 + b_2_42·b_2_5·a_1_02
- b_2_3·a_7_11 + b_2_34·a_1_1
- a_6_14·b_3_9 + b_2_5·a_7_11 + b_2_5·a_6_14·b_1_2 + b_2_54·a_1_0 + b_2_4·b_2_53·a_1_0
+ b_2_42·b_2_52·a_1_0 + b_2_3·a_6_14·b_1_2 + b_2_33·b_2_5·a_1_1 + b_2_42·a_1_02·b_3_9
- a_1_0·b_3_9·b_5_17 + b_2_4·a_7_11 + b_2_43·b_2_5·a_1_0 + b_2_34·a_1_1
- b_3_9·a_7_11 + b_2_53·a_1_0·b_3_9 + b_2_4·b_2_5·a_6_14 + b_2_4·b_2_52·a_1_0·b_3_9
+ b_2_42·a_6_14 + b_2_42·b_2_5·a_1_1·b_3_9 + b_2_42·b_2_5·a_1_0·b_3_9 + b_2_43·a_1_1·b_3_9 + b_2_3·b_2_5·a_6_14 + b_2_32·a_6_14 + b_2_33·b_2_5·a_1_1·b_1_2
- b_5_172 + b_2_4·b_2_54 + b_2_44·b_2_5 + b_2_34·b_2_5 + b_2_35
+ b_2_53·a_1_0·b_3_9 + b_2_4·b_2_5·a_6_14 + b_2_42·a_1_0·b_5_17 + b_2_42·a_6_14 + b_2_42·b_2_5·a_1_0·b_3_9 + b_2_43·a_1_1·b_3_9 + b_2_3·b_2_5·a_6_14 + b_2_32·a_6_14 + b_2_34·a_1_1·b_1_2 + c_8_30·a_1_02
- a_6_14·b_5_17 + b_2_52·a_7_11 + b_2_52·a_6_14·b_1_2 + b_2_55·a_1_0
+ b_2_42·b_2_53·a_1_0 + b_2_43·b_2_52·a_1_0 + b_2_32·a_6_14·b_1_2 + b_2_43·a_1_02·b_3_9
- a_6_142
- b_5_17·a_7_11 + b_2_54·a_1_0·b_3_9 + b_2_42·b_2_52·a_1_0·b_3_9 + b_2_43·a_6_14
+ b_2_43·b_2_5·a_1_1·b_3_9 + b_2_43·b_2_5·a_1_0·b_3_9 + b_2_44·a_1_1·b_3_9 + b_2_33·a_6_14
- a_6_14·a_7_11
- a_7_112 + b_2_45·b_2_5·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_30, a Duflot regular element of degree 8
- b_1_24 + b_2_52 + b_2_4·b_2_5 + b_2_42 + b_2_3·b_2_5 + b_2_32, an element of degree 4
- b_2_5, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_5_17 → 0, an element of degree 5
- a_6_14 → 0, an element of degree 6
- a_7_11 → 0, an element of degree 7
- c_8_30 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_5_17 → 0, an element of degree 5
- a_6_14 → 0, an element of degree 6
- a_7_11 → 0, an element of degree 7
- c_8_30 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → c_1_12, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- b_3_9 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_5_17 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- a_6_14 → 0, an element of degree 6
- a_7_11 → 0, an element of degree 7
- c_8_30 → c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_2_3 → c_1_22, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_9 → c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_5_17 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_14 → 0, an element of degree 6
- a_7_11 → 0, an element of degree 7
- c_8_30 → c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|