Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 620 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t6 − 2·t5 + 3·t4 − 3·t3 + 2·t2 − t + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_3, an element of degree 2
- b_2_5, an element of degree 2
- c_2_6, a Duflot regular element of degree 2
- b_3_11, an element of degree 3
- b_5_24, an element of degree 5
- b_5_25, an element of degree 5
- b_6_33, an element of degree 6
- c_8_59, a Duflot regular element of degree 8
Ring relations
There are 32 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·b_1_1
- a_1_2·b_1_1 + a_1_0·a_1_2
- a_2_4·b_1_1 + a_2_4·a_1_0
- b_2_3·a_1_0
- b_2_3·a_1_2 + a_2_4·b_1_1
- b_2_5·a_1_0 + a_1_23 + a_1_0·a_1_22
- a_2_42 + a_2_4·a_1_22 + a_2_4·a_1_0·a_1_2 + a_1_24
- b_1_14 + b_2_32 + c_2_6·b_1_12
- a_2_4·b_2_3 + a_2_4·a_1_0·a_1_2
- a_1_0·b_3_11 + a_2_4·a_1_22 + a_2_4·a_1_0·a_1_2
- a_1_2·b_3_11 + a_2_4·b_2_5 + a_1_24
- b_2_5·a_1_23
- a_2_4·b_3_11 + a_2_4·b_2_5·a_1_2 + a_1_25
- b_3_112 + b_1_1·b_5_24 + b_2_52·b_1_12 + b_2_3·b_1_1·b_3_11 + a_2_4·b_2_52
+ b_2_52·a_1_22 + a_2_4·b_2_5·a_1_22 + a_2_4·c_2_6·a_1_0·a_1_2 + c_2_6·a_1_24
- a_1_0·b_5_24 + a_2_4·a_1_24 + a_2_4·c_2_6·a_1_0·a_1_2 + c_2_6·a_1_24
- a_1_2·b_5_24 + a_2_4·b_2_52 + b_2_5·c_2_6·a_1_22 + a_2_4·c_2_6·a_1_22
+ c_2_6·a_1_24
- b_3_112 + b_1_1·b_5_25 + b_1_13·b_3_11 + b_2_3·b_2_52 + a_2_4·b_2_52
+ b_2_52·a_1_22 + a_2_4·b_2_5·a_1_22 + c_2_6·a_1_24
- a_1_0·b_5_25 + c_2_6·a_1_24
- a_2_4·b_5_24 + a_2_4·b_2_52·a_1_2 + a_2_4·b_2_5·c_2_6·a_1_2 + c_2_6·a_1_25
- b_2_52·b_1_13 + b_2_3·b_5_25 + b_2_3·b_5_24 + b_2_3·b_1_12·b_3_11
+ b_2_3·b_2_52·b_1_1 + b_2_32·b_3_11 + b_2_52·c_2_6·b_1_1 + c_2_6·a_1_25
- b_6_33·b_1_1 + b_2_53·b_1_1 + b_2_3·b_5_24 + b_2_3·b_2_5·b_1_13 + b_2_3·b_2_52·b_1_1
+ b_2_32·b_3_11 + b_2_5·c_2_6·b_1_13 + b_2_52·c_2_6·b_1_1 + a_2_4·c_2_6·a_1_23 + c_2_6·a_1_25 + b_2_5·c_2_62·b_1_1
- b_6_33·a_1_0 + c_2_62·a_1_23 + c_2_62·a_1_0·a_1_22
- b_6_33·a_1_2 + b_2_53·a_1_2 + a_2_4·b_5_25 + a_1_22·b_5_25 + a_2_4·b_2_52·a_1_2
+ b_2_52·c_2_6·a_1_2 + a_2_4·b_2_5·c_2_6·a_1_2 + b_2_5·c_2_62·a_1_2
- b_1_13·b_5_24 + b_2_3·b_1_13·b_3_11 + b_2_3·b_6_33 + b_2_3·b_2_53
+ b_2_32·b_2_5·b_1_12 + b_2_32·b_2_52 + c_2_6·b_1_1·b_5_24 + b_2_3·c_2_6·b_1_1·b_3_11 + b_2_3·b_2_5·c_2_6·b_1_12 + b_2_3·b_2_52·c_2_6 + b_2_3·b_2_5·c_2_62 + a_2_4·c_2_62·a_1_0·a_1_2 + c_2_62·a_1_24
- a_2_4·b_6_33 + a_2_4·b_2_53 + a_2_4·b_2_52·c_2_6 + a_2_4·b_2_5·c_2_6·a_1_22
+ a_2_4·b_2_5·c_2_62
- b_5_252 + b_5_242 + b_2_54·c_2_6 + b_2_3·c_2_6·b_6_33 + b_2_3·b_2_53·c_2_6
+ b_2_32·b_2_5·c_2_6·b_1_12 + c_2_62·b_1_1·b_5_24 + b_2_52·c_2_62·b_1_12 + b_2_3·c_2_62·b_1_1·b_3_11 + b_2_3·b_2_5·c_2_62·b_1_12 + b_2_3·b_2_52·c_2_62 + a_2_4·c_2_62·a_1_24 + b_2_3·b_2_5·c_2_63 + a_2_4·c_2_63·a_1_0·a_1_2 + c_2_63·a_1_24
- b_5_24·b_5_25 + b_5_242 + b_1_12·b_3_11·b_5_24 + b_2_52·b_1_1·b_5_24
+ b_2_52·b_6_33 + b_2_55 + b_2_3·b_3_11·b_5_25 + b_2_3·b_2_52·b_1_1·b_3_11 + b_2_3·b_2_53·b_1_12 + b_2_3·b_2_54 + b_2_32·b_1_1·b_5_24 + b_2_32·b_6_33 + b_2_32·b_2_52·b_1_12 + b_2_32·b_2_53 + b_2_33·b_1_1·b_3_11 + b_2_33·b_2_5·b_1_12 + b_2_52·a_1_2·b_5_25 + b_2_53·c_2_6·b_1_12 + b_2_54·c_2_6 + b_2_3·c_2_6·b_1_1·b_5_24 + b_2_3·b_2_52·c_2_6·b_1_12 + b_2_32·c_2_6·b_1_1·b_3_11 + b_2_32·b_2_5·c_2_6·b_1_12 + b_2_32·b_2_52·c_2_6 + b_2_5·c_2_6·a_1_2·b_5_25 + a_2_4·b_2_53·c_2_6 + a_2_4·c_2_6·a_1_2·b_5_25 + b_2_53·c_2_62 + b_2_32·b_2_5·c_2_62 + b_2_52·c_2_62·a_1_22 + a_2_4·c_2_62·a_1_24
- b_5_242 + b_1_12·b_3_11·b_5_24 + b_2_52·b_1_1·b_5_24 + b_2_3·b_3_11·b_5_25
+ b_2_3·b_3_11·b_5_24 + b_2_3·b_2_5·b_1_13·b_3_11 + b_2_32·b_1_13·b_3_11 + b_2_32·b_2_52·b_1_12 + b_2_32·b_2_53 + b_2_33·b_1_1·b_3_11 + b_2_33·b_2_5·b_1_12 + b_2_34·b_2_5 + a_2_4·b_2_54 + b_2_54·a_1_22 + c_8_59·b_1_12 + b_2_52·c_2_6·b_1_1·b_3_11 + b_2_3·c_2_6·b_1_1·b_5_24 + b_2_3·b_2_52·c_2_6·b_1_12 + b_2_32·c_2_6·b_1_1·b_3_11 + b_2_32·b_2_5·c_2_6·b_1_12 + b_2_32·b_2_52·c_2_6 + c_2_62·b_1_13·b_3_11 + b_2_3·b_2_5·c_2_62·b_1_12 + b_2_32·b_2_5·c_2_62 + b_2_52·c_2_62·a_1_22 + a_2_4·c_2_62·a_1_24
- b_6_33·b_5_25 + b_6_33·b_5_24 + b_2_52·b_1_12·b_5_24 + b_2_53·b_5_25 + b_2_53·b_5_24
+ b_2_3·b_1_1·b_3_11·b_5_24 + b_2_3·b_6_33·b_3_11 + b_2_3·b_2_52·b_5_25 + b_2_3·b_2_52·b_1_12·b_3_11 + b_2_3·b_2_53·b_3_11 + b_2_32·b_1_12·b_5_24 + b_2_32·b_2_5·b_5_25 + b_2_32·b_2_5·b_5_24 + b_2_32·b_2_5·b_1_12·b_3_11 + b_2_33·b_5_25 + b_2_33·b_5_24 + b_2_33·b_2_52·b_1_1 + b_2_34·b_3_11 + a_2_4·b_2_52·b_5_25 + a_2_4·b_2_54·a_1_2 + b_2_52·c_2_6·b_5_25 + b_2_3·b_2_5·c_2_6·b_5_25 + b_2_3·b_2_5·c_2_6·b_5_24 + b_2_3·b_2_53·c_2_6·b_1_1 + b_2_32·b_2_52·c_2_6·b_1_1 + b_2_54·c_2_6·a_1_2 + b_2_5·c_2_6·a_1_22·b_5_25 + b_2_5·c_2_62·b_5_25 + b_2_5·c_2_62·b_5_24 + b_2_5·c_2_62·b_1_12·b_3_11 + b_2_53·c_2_62·b_1_1 + b_2_3·b_2_5·c_2_62·b_3_11 + b_2_53·c_2_62·a_1_2 + a_2_4·b_2_52·c_2_62·a_1_2
- b_6_33·b_5_25 + b_2_52·b_1_12·b_5_24 + b_2_53·b_5_25 + b_2_3·b_2_5·b_1_12·b_5_24
+ b_2_3·b_2_52·b_5_25 + b_2_32·b_2_53·b_1_1 + b_2_33·b_1_12·b_3_11 + b_2_33·b_2_5·b_3_11 + b_2_33·b_2_5·b_1_13 + b_2_33·b_2_52·b_1_1 + b_2_34·b_3_11 + b_2_34·b_2_5·b_1_1 + a_2_4·b_2_52·b_5_25 + b_2_52·a_1_22·b_5_25 + a_2_4·b_2_54·a_1_2 + b_2_5·c_2_6·b_1_12·b_5_24 + b_2_52·c_2_6·b_5_25 + b_2_52·c_2_6·b_5_24 + b_2_3·c_8_59·b_1_1 + b_2_3·b_2_5·c_2_6·b_5_25 + b_2_3·b_2_5·c_2_6·b_5_24 + b_2_3·b_2_5·c_2_6·b_1_12·b_3_11 + b_2_3·b_2_52·c_2_6·b_3_11 + b_2_3·b_2_53·c_2_6·b_1_1 + b_2_32·c_2_6·b_5_25 + b_2_32·c_2_6·b_1_12·b_3_11 + b_2_54·c_2_6·a_1_2 + a_2_4·b_2_5·c_2_6·b_5_25 + b_2_5·c_2_62·b_5_25 + b_2_5·c_2_62·b_1_12·b_3_11 + b_2_53·c_2_62·b_1_1 + b_2_3·c_2_62·b_1_12·b_3_11 + b_2_3·b_2_5·c_2_62·b_1_13 + b_2_32·b_2_5·c_2_62·b_1_1 + b_2_53·c_2_62·a_1_2 + b_2_3·b_2_5·c_2_63·b_1_1
- b_6_332 + b_2_56 + b_2_3·b_2_52·b_6_33 + b_2_3·b_2_55 + b_2_32·b_3_11·b_5_24
+ b_2_32·b_2_52·b_1_1·b_3_11 + b_2_33·b_1_1·b_5_24 + b_2_33·b_1_13·b_3_11 + b_2_33·b_2_5·b_1_1·b_3_11 + b_2_33·b_2_52·b_1_12 + b_2_34·b_2_5·b_1_12 + b_2_35·b_2_5 + b_2_3·b_2_53·c_2_6·b_1_12 + b_2_3·b_2_54·c_2_6 + b_2_32·c_8_59 + b_2_32·c_2_6·b_6_33 + b_2_33·c_2_6·b_1_1·b_3_11 + b_2_33·b_2_5·c_2_6·b_1_12 + a_2_4·b_2_54·c_2_6 + b_2_54·c_2_62 + b_2_3·b_2_53·c_2_62 + b_2_32·c_2_62·b_1_1·b_3_11 + b_2_32·b_2_52·c_2_62 + b_2_33·b_2_5·c_2_62 + b_2_52·c_2_63·b_1_12 + b_2_52·c_2_64
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_6, a Duflot regular element of degree 2
- c_8_59, a Duflot regular element of degree 8
- b_1_12 + b_2_5, an element of degree 2
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 6, 8, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_1_12, an element of degree 2
- b_3_11 → 0, an element of degree 3
- b_5_24 → 0, an element of degree 5
- b_5_25 → 0, an element of degree 5
- b_6_33 → 0, an element of degree 6
- c_8_59 → c_1_18 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_3 → c_1_1·c_1_3, an element of degree 2
- b_2_5 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- c_2_6 → c_1_32 + c_1_12, an element of degree 2
- b_3_11 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_5_24 → c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_13·c_1_32 + c_1_14·c_1_3
+ c_1_0·c_1_1·c_1_33 + c_1_02·c_1_33 + c_1_02·c_1_1·c_1_32 + c_1_04·c_1_3, an element of degree 5
- b_5_25 → c_1_2·c_1_34 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_24 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_04·c_1_3, an element of degree 5
- b_6_33 → c_1_22·c_1_34 + c_1_23·c_1_33 + c_1_25·c_1_3 + c_1_26 + c_1_1·c_1_2·c_1_34
+ c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_24 + c_1_13·c_1_33 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_15·c_1_3 + c_1_02·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_3, an element of degree 6
- c_8_59 → c_1_2·c_1_37 + c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34
+ c_1_25·c_1_33 + c_1_26·c_1_32 + c_1_1·c_1_37 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_24·c_1_33 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_24·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_17·c_1_3 + c_1_18 + c_1_0·c_1_37 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_24·c_1_33 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_13·c_1_34 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_22·c_1_33 + c_1_02·c_1_12·c_1_34 + c_1_03·c_1_35 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_13·c_1_3 + c_1_05·c_1_33 + c_1_06·c_1_32 + c_1_08, an element of degree 8
|