Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 626 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t3 − t2 − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- c_2_5, a Duflot regular element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_3_9, a nilpotent element of degree 3
- c_4_18, a Duflot regular element of degree 4
Ring relations
There are 14 minimal relations of maximal degree 6:
- a_1_12 + a_1_02
- a_1_0·a_1_1 + a_1_02
- a_1_0·b_1_2
- a_1_1·b_1_22 + a_1_03
- a_2_3·a_1_1 + a_2_3·a_1_0
- b_2_4·a_1_1 + a_2_3·b_1_2 + a_2_3·a_1_1
- b_2_4·a_1_0 + a_2_3·a_1_1
- a_2_32 + a_2_3·a_1_02 + c_2_5·a_1_02
- b_2_42 + a_2_3·b_1_22 + a_2_3·a_1_02 + c_2_5·b_1_22 + c_2_5·a_1_02
- a_2_3·b_2_4 + a_2_3·a_1_02 + c_2_5·a_1_1·b_1_2 + c_2_5·a_1_02
- a_1_1·a_3_9 + a_2_3·a_1_02 + c_2_6·a_1_02
- a_2_3·b_1_22 + a_1_0·a_3_9 + c_2_6·a_1_02
- a_2_3·a_3_9 + a_2_3·c_2_6·a_1_0 + c_2_5·a_1_03
- a_3_92 + c_2_62·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_2_6, a Duflot regular element of degree 2
- c_4_18, a Duflot regular element of degree 4
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 4, 6].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_5 → c_1_12, an element of degree 2
- c_2_6 → c_1_02, an element of degree 2
- a_3_9 → 0, an element of degree 3
- c_4_18 → c_1_24 + c_1_14 + c_1_02·c_1_12, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_1·c_1_3, an element of degree 2
- c_2_5 → c_1_12, an element of degree 2
- c_2_6 → c_1_0·c_1_3 + c_1_02, an element of degree 2
- a_3_9 → 0, an element of degree 3
- c_4_18 → c_1_22·c_1_32 + c_1_24 + c_1_13·c_1_3 + c_1_14 + c_1_0·c_1_12·c_1_3
+ c_1_02·c_1_12, an element of degree 4
|