Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 633 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 − 3·t4 + 3·t3 − 2·t2 + t − 1) |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_3_11, a nilpotent element of degree 3
- a_5_22, a nilpotent element of degree 5
- b_5_23, an element of degree 5
- b_5_25, an element of degree 5
- a_6_34, a nilpotent element of degree 6
- b_6_32, an element of degree 6
- c_8_66, a Duflot regular element of degree 8
Ring relations
There are 53 minimal relations of maximal degree 12:
- a_1_12 + a_1_02
- a_1_0·a_1_1 + a_1_02
- a_1_0·b_1_2
- a_2_3·a_1_1 + a_2_3·a_1_0
- b_2_4·a_1_1 + a_2_3·b_1_2
- b_2_4·a_1_0
- b_2_5·a_1_1 + b_2_5·a_1_0 + a_1_03
- a_2_32 + a_2_3·a_1_02
- a_2_3·b_2_4
- b_2_5·b_1_22 + b_2_42 + a_2_3·b_1_22
- a_2_3·b_2_5 + a_1_1·a_3_11 + a_2_3·a_1_02
- a_2_3·b_2_5 + a_1_0·a_3_11
- b_2_5·a_1_03
- a_2_3·a_3_11 + a_1_02·a_3_11
- a_3_112 + b_2_5·a_1_0·a_3_11 + b_2_52·a_1_02 + a_1_03·a_3_11
- a_1_1·a_5_22 + b_2_52·a_1_02
- a_1_0·a_5_22 + b_2_52·a_1_02 + a_1_03·a_3_11
- b_1_2·a_5_22 + a_1_1·b_5_23
- a_1_0·b_5_23
- b_1_2·b_5_25 + b_2_4·b_2_52 + b_1_2·a_5_22 + b_2_5·b_1_2·a_3_11
- a_1_1·b_5_25 + a_1_0·b_5_25
- a_2_3·a_5_22 + b_2_5·a_1_02·a_3_11
- b_2_4·a_5_22 + a_2_3·b_5_23
- b_2_5·a_5_22 + b_2_53·a_1_0 + a_1_02·b_5_25
- b_2_53·b_1_2 + b_2_4·b_5_25 + b_2_4·a_5_22 + b_2_4·b_2_5·a_3_11
- a_6_34·b_1_2 + b_2_4·a_5_22 + b_2_4·b_2_5·a_3_11
- b_2_5·a_5_22 + b_2_53·a_1_0 + a_2_3·b_5_25 + a_6_34·a_1_1 + b_2_5·a_1_02·a_3_11
- b_2_5·a_5_22 + b_2_53·a_1_0 + a_2_3·b_5_25 + a_6_34·a_1_0 + b_2_5·a_1_02·a_3_11
- b_6_32·b_1_2 + b_2_4·b_5_23 + b_2_4·b_2_52·b_1_2
- b_6_32·a_1_1 + b_2_4·a_5_22
- b_6_32·a_1_0
- a_3_11·a_5_22 + b_2_52·a_1_0·a_3_11 + a_6_34·a_1_02
- a_3_11·b_5_25 + b_2_5·a_1_0·b_5_25 + b_2_5·a_6_34 + a_3_11·a_5_22 + b_2_53·a_1_02
- b_2_52·b_1_2·a_3_11 + b_2_4·a_6_34
- a_2_3·a_6_34
- b_2_5·b_1_2·b_5_23 + b_2_4·b_6_32 + b_2_42·b_2_52 + a_2_3·b_1_2·b_5_23
+ c_2_6·a_1_03·a_3_11
- a_2_3·b_6_32
- a_6_34·a_3_11 + b_2_5·a_1_02·b_5_25
- a_5_222 + b_2_54·a_1_02
- a_5_22·b_5_25 + b_2_52·a_1_0·b_5_25 + b_2_54·a_1_02
- b_5_23·b_5_25 + b_2_52·b_6_32 + b_2_4·b_2_54 + a_5_22·b_5_23 + b_2_5·a_3_11·b_5_23
- b_5_232 + c_8_66·b_1_22
- a_5_22·b_5_23 + c_8_66·a_1_1·b_1_2
- b_5_252 + b_2_55 + a_5_22·b_5_25 + b_2_54·a_1_02 + c_8_66·a_1_02
- a_6_34·a_5_22 + b_2_52·a_6_34·a_1_0 + b_2_53·a_1_02·a_3_11
- b_6_32·b_5_25 + b_2_53·b_5_23 + b_2_4·b_2_52·b_5_25 + a_6_34·b_5_23
- b_6_32·a_5_22 + a_6_34·b_5_23 + b_2_5·b_6_32·a_3_11 + b_2_4·b_2_53·a_3_11
- b_6_32·b_5_23 + b_2_4·b_2_52·b_5_23 + b_2_4·c_8_66·b_1_2
- b_6_32·a_5_22 + a_2_3·c_8_66·b_1_2
- a_6_34·b_5_25 + b_2_54·a_3_11 + b_2_55·a_1_0 + b_2_53·a_1_02·a_3_11
+ a_2_3·c_8_66·a_1_0 + c_8_66·a_1_03
- a_6_34·b_6_32 + b_2_52·a_3_11·b_5_23 + b_2_4·b_2_52·a_6_34
- b_6_322 + b_2_42·b_2_54 + b_2_42·c_8_66
- a_6_342 + b_2_54·a_1_0·a_3_11 + b_2_52·a_6_34·a_1_02 + a_2_3·c_8_66·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_6, a Duflot regular element of degree 2
- c_8_66, a Duflot regular element of degree 8
- b_1_22 + b_2_5 + b_2_4, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 6, 8, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_1_02, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_5_22 → 0, an element of degree 5
- b_5_23 → 0, an element of degree 5
- b_5_25 → 0, an element of degree 5
- a_6_34 → 0, an element of degree 6
- b_6_32 → 0, an element of degree 6
- c_8_66 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- c_2_6 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_5_22 → 0, an element of degree 5
- b_5_23 → c_1_2·c_1_34 + c_1_12·c_1_2·c_1_32 + c_1_14·c_1_2, an element of degree 5
- b_5_25 → c_1_35, an element of degree 5
- a_6_34 → 0, an element of degree 6
- b_6_32 → c_1_12·c_1_2·c_1_33 + c_1_14·c_1_2·c_1_3, an element of degree 6
- c_8_66 → c_1_38 + c_1_14·c_1_34 + c_1_18, an element of degree 8
|