Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 640 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t7 + t6 + t5 + t4 + 2·t2 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-5,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_5_15, a nilpotent element of degree 5
- b_5_20, an element of degree 5
- b_5_21, an element of degree 5
- b_6_27, an element of degree 6
- c_8_45, a Duflot regular element of degree 8
Ring relations
There are 36 minimal relations of maximal degree 12:
- a_1_12 + a_1_02
- a_1_0·a_1_1 + a_1_02
- a_1_0·b_1_2
- a_2_3·a_1_1 + a_2_3·a_1_0
- b_2_4·a_1_1 + a_2_3·b_1_2 + a_2_3·a_1_1
- b_2_4·a_1_0 + a_2_3·a_1_1
- b_2_5·b_1_2 + b_2_4·b_1_2 + b_2_5·a_1_1 + b_2_5·a_1_0 + a_1_03
- a_2_32 + a_2_3·a_1_02 + c_2_6·a_1_02
- b_2_4·b_1_22 + b_2_42 + a_2_3·a_1_02 + c_2_6·b_1_22 + c_2_6·a_1_02
- a_2_3·b_1_22 + a_2_3·b_2_4 + a_2_3·a_1_02 + c_2_6·a_1_1·b_1_2 + c_2_6·a_1_02
- b_2_5·a_1_03
- a_1_1·a_5_15 + b_2_52·a_1_02 + a_2_3·b_2_5·a_1_02 + b_2_5·c_2_6·a_1_02
+ a_2_3·c_2_6·a_1_02 + c_2_62·a_1_02
- a_1_0·a_5_15 + b_2_52·a_1_02 + b_2_5·c_2_6·a_1_02 + a_2_3·c_2_6·a_1_02
+ c_2_62·a_1_02
- b_1_2·a_5_15 + a_1_1·b_5_20 + a_2_3·b_2_42 + b_2_5·c_2_6·a_1_02
+ a_2_3·c_2_6·a_1_02 + c_2_62·a_1_1·b_1_2
- a_1_0·b_5_20 + a_2_3·b_2_5·a_1_02 + b_2_5·c_2_6·a_1_02
- b_1_2·b_5_21 + b_1_2·b_5_20 + b_2_4·b_2_52 + a_2_3·b_2_52 + c_2_62·b_1_22
+ c_2_62·a_1_1·b_1_2
- b_2_4·b_2_52 + b_2_43 + b_1_2·a_5_15 + a_1_1·b_5_21 + a_1_0·b_5_21 + a_2_3·b_2_52
+ a_2_3·b_2_42 + a_2_3·b_2_5·a_1_02
- a_2_3·a_5_15 + a_2_3·b_2_52·a_1_0 + a_2_3·b_2_5·c_2_6·a_1_0 + a_2_3·c_2_6·a_1_03
+ a_2_3·c_2_62·a_1_0 + c_2_62·a_1_03
- b_2_4·a_5_15 + a_2_3·b_5_20 + a_2_3·b_2_42·b_1_2 + a_2_3·b_2_52·a_1_0
+ a_2_3·b_2_4·c_2_6·b_1_2 + a_2_3·c_2_62·b_1_2 + a_2_3·c_2_62·a_1_0 + c_2_62·a_1_03
- b_2_5·b_5_20 + b_2_4·b_5_20 + b_2_53·a_1_1 + b_2_53·a_1_0 + b_2_4·a_5_15
+ a_1_02·b_5_21 + b_2_52·c_2_6·a_1_0 + a_2_3·b_2_4·c_2_6·b_1_2 + b_2_5·c_2_62·a_1_1 + b_2_5·c_2_62·a_1_0 + a_2_3·c_2_62·a_1_0 + c_2_62·a_1_03
- b_2_4·b_5_21 + b_2_4·b_5_20 + b_2_43·b_1_2 + b_2_53·a_1_1 + b_2_53·a_1_0 + b_2_4·a_5_15
+ a_2_3·b_5_21 + a_2_3·b_2_52·a_1_0 + b_2_42·c_2_6·b_1_2 + a_2_3·b_2_4·c_2_6·b_1_2 + b_2_4·c_2_62·b_1_2 + a_2_3·c_2_62·b_1_2 + a_2_3·c_2_62·a_1_0 + c_2_62·a_1_03
- b_1_22·b_5_20 + b_6_27·b_1_2 + b_2_4·b_5_20 + b_2_43·b_1_2 + a_2_3·b_2_42·b_1_2
+ c_2_6·b_1_25 + b_2_42·c_2_6·b_1_2 + c_2_6·a_1_1·b_1_24 + a_2_3·b_2_4·c_2_6·b_1_2 + a_2_3·b_2_5·c_2_6·a_1_0 + b_2_4·c_2_62·b_1_2 + c_2_62·a_1_1·b_1_22 + b_2_5·c_2_62·a_1_1 + b_2_5·c_2_62·a_1_0 + a_2_3·c_2_62·b_1_2 + c_2_62·a_1_03
- a_1_1·b_1_2·b_5_20 + b_6_27·a_1_1 + b_2_4·a_5_15 + a_2_3·b_2_52·a_1_0
+ c_2_6·a_1_1·b_1_24 + a_2_3·b_2_5·c_2_6·a_1_0 + b_2_5·c_2_62·a_1_1 + a_2_3·c_2_62·b_1_2 + a_2_3·c_2_62·a_1_0
- b_6_27·a_1_0 + b_2_5·c_2_62·a_1_0 + c_2_62·a_1_03
- b_2_4·b_6_27 + b_2_44 + a_2_3·b_2_43 + c_2_6·b_1_2·b_5_20 + c_2_62·b_1_24
+ b_2_4·b_2_5·c_2_62 + b_2_42·c_2_62 + c_2_62·a_1_1·b_1_23 + a_2_3·b_2_4·c_2_62 + a_2_3·c_2_62·a_1_02 + c_2_63·b_1_22
- a_2_3·b_6_27 + a_2_3·b_2_43 + a_2_3·b_2_52·a_1_02 + c_2_6·a_1_1·b_5_20
+ a_2_3·b_2_5·c_2_6·a_1_02 + c_2_62·a_1_1·b_1_23 + a_2_3·b_2_5·c_2_62 + a_2_3·b_2_4·c_2_62 + b_2_5·c_2_62·a_1_02 + c_2_63·a_1_1·b_1_2 + c_2_63·a_1_02
- a_5_152 + b_2_54·a_1_02 + b_2_52·c_2_62·a_1_02 + c_2_64·a_1_02
- b_5_20·b_5_21 + b_5_202 + b_2_42·b_1_2·b_5_20 + b_2_52·a_1_1·b_5_21
+ b_2_52·a_1_0·b_5_21 + a_2_3·b_2_44 + b_2_54·a_1_02 + a_2_3·b_2_5·a_1_0·b_5_21 + b_2_4·c_2_6·b_1_2·b_5_20 + b_2_5·c_2_6·a_1_0·b_5_21 + a_2_3·c_2_6·b_1_2·b_5_20 + c_2_62·b_1_2·b_5_20 + c_2_62·a_1_1·b_5_21 + c_2_62·a_1_0·b_5_21 + b_2_52·c_2_62·a_1_02 + a_2_3·b_2_4·c_2_63 + a_2_3·c_2_63·a_1_02 + c_2_64·a_1_02
- b_2_52·b_6_27 + b_2_45 + a_5_15·b_5_21 + a_5_15·b_5_20 + b_2_52·a_1_0·b_5_21
+ a_2_3·b_2_4·b_1_2·b_5_20 + b_2_54·a_1_02 + a_2_3·b_2_53·a_1_02 + b_2_4·c_2_6·b_1_2·b_5_20 + b_2_5·c_2_6·a_1_1·b_5_21 + b_2_53·c_2_6·a_1_02 + a_2_3·c_2_6·a_1_0·b_5_21 + a_2_3·b_2_52·c_2_6·a_1_02 + b_2_53·c_2_62 + c_2_62·a_1_1·b_5_21 + a_2_3·b_2_42·c_2_62 + c_2_63·b_1_24 + c_2_63·a_1_1·b_1_23 + b_2_5·c_2_63·a_1_02 + a_2_3·c_2_63·a_1_02
- b_5_202 + b_2_42·b_1_2·b_5_20 + b_2_45 + a_2_3·b_2_4·b_1_2·b_5_20 + a_2_3·b_2_44
+ c_8_45·b_1_22 + b_2_4·c_2_6·b_1_2·b_5_20 + b_2_44·c_2_6 + c_2_6·b_6_27·a_1_1·b_1_2 + a_2_3·c_2_6·b_1_2·b_5_20 + c_2_62·b_1_26 + a_2_3·b_2_42·c_2_62 + b_2_52·c_2_62·a_1_02 + c_2_63·b_1_24 + b_2_42·c_2_63 + a_2_3·b_2_4·c_2_63 + a_2_3·c_2_63·a_1_02 + c_2_64·a_1_1·b_1_2
- a_5_15·b_5_20 + a_2_3·b_2_44 + c_8_45·a_1_1·b_1_2 + a_2_3·b_2_43·c_2_6
+ b_2_53·c_2_6·a_1_02 + a_2_3·b_2_52·c_2_6·a_1_02 + c_2_62·a_1_1·b_5_20 + c_2_62·a_1_1·b_1_25 + b_2_52·c_2_62·a_1_02 + c_2_63·a_1_1·b_1_23 + a_2_3·b_2_4·c_2_63 + a_2_3·c_2_63·a_1_02 + c_2_64·a_1_02
- b_5_212 + b_5_202 + b_2_55 + b_2_52·a_1_1·b_5_21 + a_2_3·b_2_4·b_1_2·b_5_20
+ a_2_3·b_2_53·a_1_02 + b_2_44·c_2_6 + c_8_45·a_1_02 + b_2_53·c_2_6·a_1_02 + a_2_3·b_2_42·c_2_62 + b_2_52·c_2_62·a_1_02 + a_2_3·b_2_5·c_2_62·a_1_02 + a_2_3·b_2_4·c_2_63 + a_2_3·c_2_63·a_1_02 + c_2_64·b_1_22 + c_2_64·a_1_1·b_1_2
- b_6_27·b_5_21 + b_6_27·b_5_20 + b_2_45·b_1_2 + b_2_53·a_5_15 + b_2_55·a_1_0
+ a_2_3·b_2_42·b_5_20 + a_2_3·b_2_44·b_1_2 + b_2_52·a_1_02·b_5_21 + a_2_3·b_2_5·a_1_02·b_5_21 + b_2_42·c_2_6·b_5_20 + b_2_44·c_2_6·b_1_2 + b_2_54·c_2_6·a_1_1 + a_2_3·b_2_4·c_2_6·b_5_20 + a_2_3·b_2_53·c_2_6·a_1_0 + c_2_62·b_6_27·b_1_2 + b_2_5·c_2_62·b_5_21 + b_2_4·c_2_62·b_5_20 + c_2_62·b_6_27·a_1_1 + b_2_53·c_2_62·a_1_0 + a_2_3·c_2_62·b_5_20 + a_2_3·b_2_42·c_2_62·b_1_2 + a_2_3·b_2_52·c_2_62·a_1_0 + b_2_42·c_2_63·b_1_2 + b_2_52·c_2_63·a_1_0 + a_2_3·b_2_4·c_2_63·b_1_2 + c_2_64·b_1_23 + b_2_4·c_2_64·b_1_2 + b_2_5·c_2_64·a_1_1 + a_2_3·c_2_64·b_1_2
- b_6_27·b_5_21 + b_2_43·b_5_20 + b_2_45·b_1_2 + b_2_53·a_5_15 + b_2_55·a_1_0
+ a_2_3·b_2_44·b_1_2 + b_2_52·a_1_02·b_5_21 + c_8_45·b_1_23 + c_2_6·b_6_27·b_1_23 + b_2_4·c_8_45·b_1_2 + b_2_44·c_2_6·b_1_2 + b_2_54·c_2_6·a_1_1 + a_2_3·b_2_53·c_2_6·a_1_0 + b_2_5·c_2_62·b_5_21 + b_2_4·c_2_62·b_5_20 + b_2_43·c_2_62·b_1_2 + b_2_53·c_2_62·a_1_1 + c_2_62·a_1_02·b_5_21 + c_2_63·b_1_25 + b_2_42·c_2_63·b_1_2 + a_2_3·b_2_4·c_2_63·b_1_2 + a_2_3·b_2_5·c_2_63·a_1_0 + b_2_4·c_2_64·b_1_2 + a_2_3·c_2_64·b_1_2
- b_6_27·a_5_15 + a_2_3·b_2_42·b_5_20 + a_2_3·b_2_44·b_1_2 + c_8_45·a_1_1·b_1_22
+ c_2_6·b_6_27·a_1_1·b_1_22 + a_2_3·c_8_45·b_1_2 + a_2_3·b_2_43·c_2_6·b_1_2 + a_2_3·c_2_6·a_1_02·b_5_21 + b_2_5·c_2_62·a_5_15 + a_2_3·c_2_62·b_5_20 + a_2_3·b_2_42·c_2_62·b_1_2 + c_2_63·a_1_1·b_1_24 + a_2_3·b_2_4·c_2_63·b_1_2 + a_2_3·b_2_5·c_2_63·a_1_0 + a_2_3·c_2_63·a_1_03 + a_2_3·c_2_64·b_1_2 + c_2_64·a_1_03
- b_6_272 + b_2_46 + c_8_45·b_1_24 + b_2_42·c_8_45 + c_2_6·b_6_27·a_1_1·b_1_23
+ a_2_3·b_2_44·c_2_6 + a_2_3·c_8_45·a_1_02 + b_2_4·c_2_62·b_1_2·b_5_20 + b_2_44·c_2_62 + a_2_3·b_2_43·c_2_62 + c_2_6·c_8_45·a_1_02 + c_2_63·b_1_26 + b_2_43·c_2_63 + c_2_64·b_1_24 + b_2_52·c_2_64 + b_2_42·c_2_64 + a_2_3·b_2_4·c_2_64 + a_2_3·c_2_64·a_1_02 + c_2_65·a_1_1·b_1_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_6, a Duflot regular element of degree 2
- c_8_45, a Duflot regular element of degree 8
- b_1_22 + b_2_5 + b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_1_12, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- b_5_21 → 0, an element of degree 5
- b_6_27 → 0, an element of degree 6
- c_8_45 → c_1_18 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_1·c_1_2, an element of degree 2
- b_2_5 → c_1_1·c_1_2, an element of degree 2
- c_2_6 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_20 → c_1_12·c_1_23 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_5_21 → c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_6_27 → c_1_1·c_1_25 + c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_02·c_1_24
+ c_1_02·c_1_1·c_1_23 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- c_8_45 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_18 + c_1_02·c_1_13·c_1_23 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- c_2_6 → c_1_12, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- b_5_21 → c_1_25, an element of degree 5
- b_6_27 → c_1_14·c_1_22, an element of degree 6
- c_8_45 → c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8
|