Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 664 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 + t4 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_4_4, a nilpotent element of degree 4
- a_4_6, a nilpotent element of degree 4
- b_5_11, an element of degree 5
- b_5_12, an element of degree 5
- a_7_13, a nilpotent element of degree 7
- a_7_11, a nilpotent element of degree 7
- a_8_13, a nilpotent element of degree 8
- c_8_25, a Duflot regular element of degree 8
Ring relations
There are 61 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·b_1_1 + a_1_22
- a_1_2·b_1_1 + a_1_0·a_1_2
- b_1_13 + b_2_4·b_1_1 + b_2_4·a_1_0 + b_2_3·a_1_2
- a_1_0·a_3_4 + b_2_3·a_1_0·a_1_2
- a_1_2·a_3_4 + b_2_4·a_1_0·a_1_2
- b_2_3·b_2_4·a_1_2 + b_2_32·a_1_2
- a_4_4·b_1_1 + b_2_3·a_3_4 + b_2_3·b_2_4·a_1_0 + b_2_32·a_1_2
- a_4_4·a_1_0
- b_1_12·a_3_4 + b_2_4·a_3_4 + b_2_42·a_1_0 + b_2_32·a_1_2 + a_4_4·a_1_2
- a_4_6·b_1_1 + b_2_4·a_3_4 + b_2_42·a_1_0 + b_2_3·a_3_4 + b_2_3·b_2_4·a_1_0
- b_1_12·a_3_4 + b_2_4·a_3_4 + b_2_42·a_1_0 + b_2_32·a_1_2 + a_4_6·a_1_0
- b_1_12·a_3_4 + b_2_4·a_3_4 + b_2_42·a_1_0 + b_2_32·a_1_2 + a_4_6·a_1_2
- a_3_42
- a_1_2·b_5_11
- b_1_1·b_5_12 + b_1_1·b_5_11 + a_1_0·b_5_12 + a_1_0·b_5_11 + b_2_3·b_1_1·a_3_4
- a_1_2·b_5_12 + a_1_0·b_5_11 + b_2_4·b_1_1·a_3_4 + b_2_4·a_4_6 + b_2_4·a_4_4
+ b_2_3·b_1_1·a_3_4 + b_2_3·a_4_6 + b_2_3·a_4_4
- a_4_4·a_3_4 + b_2_3·a_4_4·a_1_2
- a_4_6·a_3_4 + b_2_4·a_4_4·a_1_2 + b_2_3·a_4_4·a_1_2
- b_1_12·b_5_11 + b_2_4·b_5_11 + b_2_3·b_5_12 + b_2_3·b_5_11 + b_2_3·b_2_42·a_1_0
+ b_2_32·a_3_4 + b_2_33·a_1_0 + b_2_3·a_4_4·a_1_2
- a_4_42
- a_4_4·a_4_6
- a_4_62
- a_3_4·b_5_12 + a_3_4·b_5_11 + b_2_4·a_1_0·b_5_12 + b_2_3·a_1_0·b_5_12
+ b_2_3·b_2_4·b_1_1·a_3_4 + b_2_3·b_2_4·a_4_6 + b_2_3·b_2_4·a_4_4 + b_2_32·b_1_1·a_3_4 + b_2_32·a_4_6 + b_2_32·a_4_4
- a_3_4·b_5_11 + b_1_1·a_7_13 + b_2_3·a_1_0·b_5_12 + b_2_3·b_2_4·b_1_1·a_3_4
+ b_2_3·b_2_4·a_4_6 + b_2_3·b_2_4·a_4_4 + b_2_32·b_1_1·a_3_4 + b_2_32·a_4_6 + b_2_32·a_4_4 + b_2_43·a_1_0·a_1_2
- a_1_0·a_7_13 + b_2_43·a_1_0·a_1_2
- a_1_2·a_7_13
- a_3_4·b_5_11 + b_1_1·a_7_11 + b_2_4·a_1_0·b_5_12 + b_2_42·a_4_4
+ b_2_3·b_2_4·b_1_1·a_3_4 + b_2_3·b_2_4·a_4_4 + b_2_32·b_1_1·a_3_4
- b_2_4·a_1_0·b_5_12 + b_2_42·a_4_4 + b_2_3·a_1_0·b_5_12 + b_2_3·b_2_4·a_4_6
+ b_2_32·a_4_6 + b_2_32·a_4_4 + a_1_0·a_7_11
- a_1_2·a_7_11
- a_4_6·b_5_12 + a_4_6·b_5_11 + a_4_4·b_5_12 + a_4_4·b_5_11 + b_2_32·b_2_42·a_1_0
+ b_2_33·b_2_4·a_1_0 + b_2_32·a_4_4·a_1_2
- a_4_4·b_5_11 + b_2_3·a_7_13 + b_2_33·b_2_4·a_1_0 + b_2_34·a_1_0
- b_1_12·a_7_13 + a_4_6·b_5_11 + a_4_4·b_5_11 + b_2_33·b_2_4·a_1_0 + b_2_34·a_1_0
- a_4_6·b_5_11 + a_4_4·b_5_12 + b_2_4·a_7_13 + b_2_44·a_1_2 + b_2_32·b_2_42·a_1_0
+ b_2_34·a_1_2 + b_2_34·a_1_0 + b_2_42·a_4_4·a_1_2
- a_8_13·b_1_1 + a_4_6·b_5_11 + a_4_4·b_5_12 + b_2_3·b_2_43·a_1_0 + b_2_32·b_2_4·a_3_4
+ b_2_33·a_3_4 + b_2_34·a_1_0 + b_2_42·a_4_4·a_1_2 + b_2_32·a_4_4·a_1_2
- a_4_4·b_5_12 + a_4_4·b_5_11 + b_2_3·b_2_43·a_1_0 + b_2_32·b_2_42·a_1_0 + a_8_13·a_1_0
+ b_2_42·a_4_4·a_1_2
- a_8_13·a_1_2 + b_2_42·a_4_4·a_1_2
- a_3_4·a_7_13 + b_2_44·a_1_0·a_1_2
- b_5_11·b_5_12 + b_5_112 + b_2_32·b_2_42·b_1_12 + b_2_32·b_2_43
+ b_2_34·b_1_12 + b_2_34·b_2_4 + b_2_3·b_1_1·a_7_13 + b_2_3·b_2_42·a_4_4 + b_2_32·a_1_0·b_5_12 + b_2_32·b_2_4·b_1_1·a_3_4 + b_2_32·b_2_4·a_4_4 + b_2_33·b_1_1·a_3_4 + b_2_3·a_1_0·a_7_11
- a_3_4·a_7_11 + b_2_4·a_1_0·a_7_11
- b_5_11·b_5_12 + b_2_42·b_1_1·b_5_11 + b_2_32·b_1_1·b_5_11 + b_2_32·b_2_43
+ b_2_33·b_2_42 + b_2_34·b_1_12 + b_2_34·b_2_4 + b_2_35 + b_2_4·b_1_1·a_7_13 + b_2_43·b_1_1·a_3_4 + b_2_3·b_1_1·a_7_13 + b_2_3·b_2_42·a_4_6 + b_2_3·b_2_42·a_4_4 + b_2_32·b_2_4·b_1_1·a_3_4 + b_2_32·b_2_4·a_4_6 + b_2_32·b_2_4·a_4_4 + b_2_44·a_1_0·a_1_2 + c_8_25·b_1_12
- b_5_122 + b_5_11·b_5_12 + b_2_3·b_2_43·b_1_12 + b_2_3·b_2_44
+ b_2_32·b_2_42·b_1_12 + b_2_32·b_2_43 + b_2_33·b_2_4·b_1_12 + b_2_33·b_2_42 + b_2_34·b_1_12 + b_2_34·b_2_4 + b_2_43·b_1_1·a_3_4 + b_2_43·a_4_6 + b_2_43·a_4_4 + b_2_3·b_1_1·a_7_13 + b_2_33·b_1_1·a_3_4 + b_2_33·a_4_6 + b_2_33·a_4_4 + c_8_25·a_1_22
- a_4_4·a_7_13 + b_2_43·a_4_4·a_1_2 + b_2_33·a_4_4·a_1_2
- a_4_6·a_7_13 + b_2_43·a_4_4·a_1_2 + b_2_33·a_4_4·a_1_2
- a_4_6·a_7_11 + a_4_4·a_7_11 + b_2_3·a_8_13·a_1_0 + b_2_33·a_4_4·a_1_2
- a_4_4·a_7_11 + b_2_4·a_8_13·a_1_0
- a_8_13·a_3_4 + a_4_4·a_7_11 + b_2_33·a_4_4·a_1_2
- b_5_12·a_7_13 + b_5_11·a_7_13 + b_2_44·b_1_1·a_3_4 + b_2_44·a_4_6 + b_2_44·a_4_4
+ b_2_32·b_2_42·a_4_4 + b_2_33·b_2_4·a_4_6 + b_2_34·b_1_1·a_3_4 + b_2_3·b_2_4·a_1_0·a_7_11
- b_5_11·a_7_13 + b_2_42·b_1_1·a_7_13 + b_2_32·b_1_1·a_7_13 + b_2_32·b_2_42·a_4_6
+ b_2_34·b_1_1·a_3_4 + b_2_34·a_4_6 + b_2_45·a_1_0·a_1_2 + c_8_25·b_1_1·a_3_4
- b_5_12·a_7_13 + b_5_11·a_7_13 + b_2_44·b_1_1·a_3_4 + b_2_44·a_4_6 + b_2_44·a_4_4
+ b_2_32·b_2_42·a_4_4 + b_2_33·b_2_4·a_4_6 + b_2_34·b_1_1·a_3_4 + a_4_4·a_8_13
- b_5_12·a_7_13 + b_5_11·a_7_11 + b_2_44·b_1_1·a_3_4 + b_2_44·a_4_6 + b_2_44·a_4_4
+ b_2_3·b_2_4·b_1_1·a_7_13 + b_2_3·b_2_4·a_8_13 + b_2_3·b_2_43·a_4_4 + b_2_32·b_1_1·a_7_13 + b_2_32·a_8_13 + b_2_32·b_2_42·a_4_6 + b_2_33·a_1_0·b_5_12 + b_2_33·b_2_4·a_4_4 + b_2_34·b_1_1·a_3_4 + b_2_34·a_4_4 + b_2_32·a_1_0·a_7_11
- b_5_12·a_7_11 + b_5_12·a_7_13 + b_2_42·b_1_1·a_7_13 + b_2_42·a_8_13
+ b_2_44·b_1_1·a_3_4 + b_2_44·a_4_6 + b_2_3·b_2_43·a_4_6 + b_2_3·b_2_43·a_4_4 + b_2_32·b_1_1·a_7_13 + b_2_32·a_8_13 + b_2_32·b_2_42·a_4_6 + b_2_33·b_2_4·a_4_4 + b_2_34·b_1_1·a_3_4 + b_2_34·a_4_6 + b_2_45·a_1_0·a_1_2
- b_5_12·a_7_13 + b_5_11·a_7_13 + b_2_44·b_1_1·a_3_4 + b_2_44·a_4_6 + b_2_44·a_4_4
+ b_2_32·b_2_42·a_4_4 + b_2_33·b_2_4·a_4_6 + b_2_34·b_1_1·a_3_4 + a_4_6·a_8_13 + b_2_32·a_1_0·a_7_11
- a_8_13·b_5_11 + b_2_43·a_7_13 + b_2_46·a_1_2 + b_2_3·b_2_45·a_1_0
+ b_2_32·b_2_4·a_7_11 + b_2_32·b_2_4·a_7_13 + b_2_32·b_2_43·a_3_4 + b_2_33·a_7_11 + b_2_33·b_2_42·a_3_4 + b_2_34·b_2_42·a_1_0 + b_2_35·a_3_4 + b_2_35·b_2_4·a_1_0 + b_2_42·a_8_13·a_1_0 + b_2_34·a_4_4·a_1_2 + b_2_4·c_8_25·a_3_4 + b_2_42·c_8_25·a_1_0 + b_2_32·c_8_25·a_1_2 + a_4_4·c_8_25·a_1_2
- a_8_13·b_5_12 + b_2_43·a_7_13 + b_2_46·a_1_2 + b_2_3·b_2_42·a_7_11
+ b_2_3·b_2_42·a_7_13 + b_2_32·b_2_43·a_3_4 + b_2_33·a_7_11 + b_2_33·b_2_42·a_3_4 + b_2_34·b_2_42·a_1_0 + b_2_35·a_3_4 + b_2_44·a_4_4·a_1_2 + b_2_3·b_2_4·a_8_13·a_1_0 + b_2_34·a_4_4·a_1_2 + b_2_4·c_8_25·a_3_4 + b_2_42·c_8_25·a_1_0 + b_2_32·c_8_25·a_1_2 + a_4_4·c_8_25·a_1_2
- a_7_132
- a_7_13·a_7_11 + b_2_3·b_2_42·a_1_0·a_7_11 + b_2_33·a_1_0·a_7_11
- a_7_112
- a_8_13·a_7_13 + b_2_45·a_4_4·a_1_2 + b_2_3·b_2_42·a_8_13·a_1_0
+ b_2_33·a_8_13·a_1_0 + b_2_35·a_4_4·a_1_2
- a_8_13·a_7_11 + b_2_43·a_8_13·a_1_0 + b_2_32·b_2_4·a_8_13·a_1_0
+ b_2_35·a_4_4·a_1_2 + b_2_3·a_4_4·c_8_25·a_1_2
- a_8_132
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_25, a Duflot regular element of degree 8
- b_2_42 + b_2_3·b_1_12 + b_2_3·b_2_4 + b_2_32, an element of degree 4
- b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- b_5_11 → 0, an element of degree 5
- b_5_12 → 0, an element of degree 5
- a_7_13 → 0, an element of degree 7
- a_7_11 → 0, an element of degree 7
- a_8_13 → 0, an element of degree 8
- c_8_25 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_2_3 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- b_5_11 → c_1_13·c_1_22 + c_1_15 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_5_12 → c_1_13·c_1_22 + c_1_15 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- a_7_13 → 0, an element of degree 7
- a_7_11 → 0, an element of degree 7
- a_8_13 → 0, an element of degree 8
- c_8_25 → c_1_12·c_1_26 + c_1_16·c_1_22 + c_1_02·c_1_26 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_3 → c_1_12, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- b_5_11 → c_1_13·c_1_22 + c_1_15, an element of degree 5
- b_5_12 → c_1_1·c_1_24 + c_1_15, an element of degree 5
- a_7_13 → 0, an element of degree 7
- a_7_11 → 0, an element of degree 7
- a_8_13 → 0, an element of degree 8
- c_8_25 → c_1_14·c_1_24 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|