Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 71 of order 128
General information on the group
- The group has 2 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t5 + t3 + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_2, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- b_3_2, an element of degree 3
- b_3_3, an element of degree 3
- b_3_4, an element of degree 3
- a_4_1, a nilpotent element of degree 4
- b_4_6, an element of degree 4
- a_5_1, a nilpotent element of degree 5
- b_5_5, an element of degree 5
- b_5_8, an element of degree 5
- b_5_9, an element of degree 5
- a_6_5, a nilpotent element of degree 6
- b_6_12, an element of degree 6
- b_7_13, an element of degree 7
- b_7_15, an element of degree 7
- a_8_4, a nilpotent element of degree 8
- c_8_19, a Duflot regular element of degree 8
- b_9_23, an element of degree 9
Ring relations
There are 152 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·b_1_1
- a_2_2·a_1_0
- a_2_2·b_1_1
- b_2_1·b_1_1
- a_2_22
- a_1_0·b_3_2
- a_1_0·b_3_3 + a_2_2·b_2_1
- b_1_1·b_3_3 + b_1_1·b_3_2
- a_1_0·b_3_4 + a_2_2·b_2_1
- a_2_2·b_3_2
- b_2_1·b_3_2
- a_2_2·b_3_3
- a_2_2·b_3_4
- b_2_1·b_3_4 + b_2_1·b_3_3
- a_4_1·a_1_0
- a_4_1·b_1_1
- b_4_6·a_1_0
- b_3_2·b_3_3 + b_3_22
- a_2_2·a_4_1
- b_3_3·b_3_4 + b_3_32 + b_3_2·b_3_4 + b_3_22 + a_2_2·b_4_6
- b_3_32 + b_3_22 + b_2_1·b_4_6 + b_2_1·a_4_1
- b_3_22 + b_4_6·b_1_12
- b_2_1·a_4_1 + a_1_0·a_5_1
- b_1_1·a_5_1
- a_1_0·b_5_5
- b_3_22 + b_1_1·b_5_5 + b_1_13·b_3_2
- a_1_0·b_5_8 + b_2_1·a_4_1
- b_3_42 + b_3_32 + b_3_22 + b_1_1·b_5_8 + b_1_13·b_3_4 + b_1_13·b_3_2
- a_1_0·b_5_9 + a_2_2·b_2_12
- b_3_42 + b_3_32 + b_3_2·b_3_4 + b_1_1·b_5_9 + b_1_13·b_3_4
- a_4_1·b_3_2
- a_4_1·b_3_4 + a_4_1·b_3_3
- a_4_1·b_3_3 + a_2_2·a_5_1
- a_2_2·b_5_5
- a_4_1·b_3_3 + a_2_2·b_5_8
- b_2_1·b_5_8 + b_2_1·b_5_5 + b_2_1·a_5_1
- a_2_2·b_5_9
- b_2_1·b_5_9 + b_2_12·b_3_3 + a_4_1·b_3_3
- a_4_1·b_3_3 + a_6_5·a_1_0
- a_6_5·b_1_1
- b_6_12·a_1_0
- b_1_14·b_3_4 + b_6_12·b_1_1 + b_4_6·b_3_2 + b_4_6·b_1_13
- a_4_12
- b_3_2·a_5_1
- b_3_4·a_5_1 + b_3_3·a_5_1
- b_3_2·b_5_5 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14
- b_3_3·b_5_8 + b_3_3·b_5_5 + b_3_2·b_5_8 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14 + b_3_3·a_5_1
+ a_4_1·b_4_6
- b_3_4·b_5_5 + b_3_3·b_5_5 + b_1_13·b_5_9 + b_1_13·b_5_8 + b_1_15·b_3_2
+ b_4_6·b_1_1·b_3_4 + b_4_6·b_1_1·b_3_2 + a_4_1·b_4_6
- b_3_2·b_5_9 + b_3_2·b_5_8 + b_4_6·b_1_1·b_3_4 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14
- b_3_3·b_5_9 + b_3_2·b_5_8 + b_4_6·b_1_1·b_3_4 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14
+ b_2_12·b_4_6 + b_2_1·a_1_0·a_5_1
- b_3_4·b_5_9 + b_3_4·b_5_8 + b_3_3·b_5_5 + b_3_2·b_5_8 + b_4_6·b_1_1·b_3_4
+ b_4_6·b_1_1·b_3_2 + b_2_12·b_4_6 + b_3_3·a_5_1 + b_2_1·a_1_0·a_5_1
- a_2_2·a_6_5
- b_3_3·a_5_1 + b_2_1·a_6_5 + a_2_2·b_2_13 + b_2_1·a_1_0·a_5_1
- a_4_1·b_4_6 + a_2_2·b_6_12
- b_3_3·b_5_5 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14 + b_2_1·b_6_12 + b_2_12·b_4_6
- a_1_0·b_7_13 + a_2_2·b_2_13 + b_2_1·a_1_0·a_5_1
- b_3_4·b_5_5 + b_3_3·b_5_5 + b_3_2·b_5_8 + b_1_1·b_7_13 + b_6_12·b_1_12
+ b_4_6·b_1_1·b_3_4 + b_4_6·b_1_1·b_3_2 + b_4_6·b_1_14 + a_4_1·b_4_6
- a_1_0·b_7_15 + b_2_1·a_1_0·a_5_1
- b_3_4·b_5_8 + b_3_4·b_5_5 + b_1_1·b_7_15 + b_1_13·b_5_8 + b_4_6·b_1_1·b_3_4
+ b_4_6·b_1_1·b_3_2 + b_3_3·a_5_1 + a_4_1·b_4_6
- a_4_1·a_5_1
- a_4_1·b_5_5
- a_4_1·b_5_8
- a_4_1·b_5_9 + a_2_2·b_2_1·a_5_1
- a_6_5·b_3_2
- a_6_5·b_3_3 + b_4_6·a_5_1 + a_2_2·b_2_1·a_5_1
- a_6_5·b_3_4 + b_4_6·a_5_1 + a_2_2·b_2_1·a_5_1
- b_1_14·b_5_9 + b_1_14·b_5_8 + b_1_16·b_3_2 + b_6_12·b_3_2 + b_4_6·b_1_12·b_3_2
+ b_4_6·b_1_15 + b_4_62·b_1_1
- b_1_14·b_5_9 + b_1_14·b_5_8 + b_1_16·b_3_2 + b_6_12·b_3_3 + b_4_6·b_5_5
+ b_4_6·b_1_15 + b_2_1·b_4_6·b_3_3
- b_1_14·b_5_8 + b_1_16·b_3_2 + b_6_12·b_3_4 + b_6_12·b_1_13 + b_4_6·b_5_9 + b_4_6·b_5_8
+ b_4_6·b_1_12·b_3_4 + b_4_6·b_1_15 + b_4_62·b_1_1 + b_4_6·a_5_1
- a_2_2·b_7_13 + a_2_2·b_2_1·a_5_1
- b_2_1·b_7_13 + b_2_12·b_5_5 + b_2_13·b_3_3 + b_2_12·a_5_1 + a_2_2·b_2_1·a_5_1
- a_2_2·b_7_15 + a_2_2·b_2_1·a_5_1
- b_2_1·b_7_15 + b_2_1·b_4_6·b_3_3 + b_2_12·b_5_5 + b_4_6·a_5_1 + b_2_12·a_5_1
- a_8_4·a_1_0 + a_2_2·b_2_1·a_5_1
- a_8_4·b_1_1
- a_2_2·b_2_14 + a_5_12 + b_2_12·a_1_0·a_5_1
- b_5_52 + b_4_6·b_1_16 + b_4_62·b_1_12 + b_2_1·b_4_62
- a_5_1·b_5_8 + a_5_1·b_5_5 + a_5_12
- b_5_92 + b_5_82 + b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_4 + b_4_6·b_1_13·b_3_2
+ b_4_6·b_1_16 + b_4_62·b_1_12 + b_2_1·b_4_62 + b_2_13·b_4_6 + a_2_2·b_2_14
- a_5_1·b_5_9 + b_2_12·a_6_5 + a_5_12
- a_4_1·a_6_5
- b_5_5·b_5_9 + b_5_5·b_5_8 + b_4_6·b_1_1·b_5_9 + b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_4
+ b_4_6·b_1_13·b_3_2 + b_4_6·b_1_16 + b_2_1·b_4_62 + b_2_12·b_6_12 + b_2_13·b_4_6 + a_5_1·b_5_5 + a_2_2·b_4_62
- a_4_1·b_6_12 + a_2_2·b_4_62
- b_5_5·b_5_8 + b_1_13·b_7_13 + b_6_12·b_1_1·b_3_2 + b_6_12·b_1_14 + b_4_6·b_1_1·b_5_8
+ b_4_6·b_1_13·b_3_2 + b_4_62·b_1_12 + b_2_1·b_4_62 + a_5_1·b_5_5 + a_2_2·b_4_62
- b_3_2·b_7_13 + b_6_12·b_1_1·b_3_2 + b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_4
- b_5_5·b_5_9 + b_5_5·b_5_8 + b_3_3·b_7_13 + b_6_12·b_1_1·b_3_2 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_13·b_3_2 + b_4_6·b_1_16 + b_2_1·b_4_62 + b_2_13·b_4_6 + a_5_1·b_5_9 + a_5_1·b_5_5 + a_2_2·b_2_14 + a_5_12
- b_5_8·b_5_9 + b_5_82 + b_3_4·b_7_13 + b_6_12·b_1_1·b_3_4 + b_6_12·b_1_1·b_3_2
+ b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_2 + b_4_6·b_1_16 + b_4_62·b_1_12 + b_2_1·b_4_62 + b_2_13·b_4_6 + a_2_2·b_4_62 + a_2_2·b_2_14
- b_5_8·b_5_9 + b_5_82 + b_5_5·b_5_9 + b_5_5·b_5_8 + b_3_2·b_7_15 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_13·b_3_2 + b_4_6·b_1_16 + b_4_62·b_1_12 + a_5_1·b_5_9 + a_5_1·b_5_5 + a_2_2·b_4_62 + a_5_12
- b_5_8·b_5_9 + b_5_82 + b_3_3·b_7_15 + b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_4
+ b_4_62·b_1_12 + b_4_6·a_6_5 + a_5_12
- b_5_82 + b_5_5·b_5_9 + b_5_5·b_5_8 + b_3_4·b_7_15 + b_6_12·b_1_1·b_3_2
+ b_4_6·b_1_13·b_3_4 + b_4_6·b_1_13·b_3_2 + b_2_1·b_4_62 + a_5_1·b_5_9 + a_5_1·b_5_5 + b_4_6·a_6_5 + a_5_12
- b_5_82 + b_5_5·b_5_8 + b_1_13·b_7_15 + b_6_12·b_1_1·b_3_4 + b_6_12·b_1_1·b_3_2
+ b_6_12·b_1_14 + b_4_6·b_1_1·b_5_9 + b_4_6·b_1_1·b_5_8 + b_4_6·b_1_13·b_3_4 + b_4_62·b_1_12 + a_5_1·b_5_5 + a_2_2·b_4_62 + a_5_12 + c_8_19·b_1_12
- a_2_2·a_8_4
- a_5_1·b_5_9 + a_5_1·b_5_5 + b_2_1·a_8_4 + a_2_2·b_2_14
- a_1_0·b_9_23 + a_5_12
- b_5_8·b_5_9 + b_5_82 + b_5_5·b_5_9 + b_1_1·b_9_23 + b_6_12·b_1_1·b_3_2
+ b_4_6·b_1_1·b_5_9 + b_4_6·b_1_13·b_3_4 + b_2_1·b_4_62 + a_5_1·b_5_9 + a_5_12
- a_6_5·a_5_1
- a_6_5·b_5_9 + b_2_1·b_4_6·a_5_1 + a_2_2·b_2_12·a_5_1
- a_6_5·b_5_8 + a_6_5·b_5_5
- b_6_12·a_5_1 + a_6_5·b_5_8 + b_2_1·b_4_6·a_5_1
- b_6_12·b_5_5 + b_6_12·b_1_12·b_3_2 + b_4_6·b_6_12·b_1_1 + b_4_62·b_3_3 + b_4_62·b_3_2
+ b_2_1·b_4_6·b_5_5
- b_1_14·b_7_13 + b_6_12·b_5_9 + b_6_12·b_5_8 + b_6_12·b_1_12·b_3_2 + b_6_12·b_1_15
+ b_4_6·b_1_12·b_5_9 + b_4_6·b_1_12·b_5_8 + b_4_6·b_1_14·b_3_2 + b_4_6·b_1_17 + b_4_6·b_6_12·b_1_1 + b_4_62·b_3_4 + b_4_62·b_1_13 + b_2_12·b_4_6·b_3_3 + a_6_5·b_5_8 + b_2_1·b_4_6·a_5_1
- a_4_1·b_7_13 + a_2_2·b_2_12·a_5_1
- b_1_14·b_7_15 + b_1_18·b_3_2 + b_6_12·b_5_8 + b_6_12·b_1_12·b_3_4
+ b_6_12·b_1_12·b_3_2 + b_6_12·b_1_15 + b_4_6·b_7_13 + b_4_6·b_1_12·b_5_8 + b_4_6·b_1_14·b_3_2 + b_4_6·b_1_17 + b_4_62·b_3_3 + b_2_12·b_4_6·b_3_3 + a_6_5·b_5_8
- a_4_1·b_7_15
- a_8_4·b_3_2
- a_8_4·b_3_3 + a_6_5·b_5_8 + b_2_1·b_4_6·a_5_1
- a_8_4·b_3_4 + a_6_5·b_5_8 + b_2_1·b_4_6·a_5_1
- a_2_2·b_9_23 + a_2_2·b_2_12·a_5_1
- b_2_1·b_9_23 + b_2_1·b_4_6·b_5_5 + b_2_14·b_3_3 + a_6_5·b_5_8 + b_2_1·b_4_6·a_5_1
+ b_2_13·a_5_1 + b_2_1·c_8_19·a_1_0
- a_6_52
- b_6_12·b_1_13·b_3_4 + b_6_122 + b_4_6·b_1_13·b_5_9 + b_4_6·b_1_13·b_5_8
+ b_4_6·b_1_15·b_3_2 + b_4_6·b_6_12·b_1_12 + b_4_62·b_1_1·b_3_2 + b_4_62·b_1_14 + b_4_63 + b_2_12·b_4_62
- b_5_5·b_7_13 + b_6_12·b_1_13·b_3_4 + b_6_12·b_1_13·b_3_2 + b_6_122
+ b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_9 + b_4_6·b_1_15·b_3_2 + b_4_63 + b_2_13·b_6_12 + b_2_14·b_4_6 + a_5_1·b_7_13 + b_2_13·a_6_5 + a_2_2·b_4_6·b_6_12
- a_5_1·b_7_15 + a_5_1·b_7_13 + b_2_1·b_4_6·a_6_5 + b_2_13·a_6_5 + b_2_1·a_5_12
- b_5_9·b_7_13 + b_5_8·b_7_13 + b_6_12·b_1_1·b_5_9 + b_6_12·b_1_1·b_5_8
+ b_6_12·b_1_13·b_3_4 + b_6_122 + b_4_6·b_1_1·b_7_15 + b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_8 + b_4_6·b_1_15·b_3_2 + b_4_63 + b_2_14·b_4_6 + a_2_2·b_4_6·b_6_12 + b_2_1·a_5_12 + b_2_13·a_1_0·a_5_1
- b_5_9·b_7_15 + b_5_9·b_7_13 + b_5_8·b_7_15 + b_6_12·b_1_1·b_5_8 + b_4_6·b_1_1·b_7_13
+ b_4_6·b_1_13·b_5_8 + b_4_6·b_1_15·b_3_2 + b_4_6·b_1_18 + b_4_62·b_1_1·b_3_2 + b_2_1·b_4_6·b_6_12 + b_2_12·b_4_62 + b_2_14·b_4_6 + a_6_5·b_6_12 + b_2_1·b_4_6·a_6_5 + a_2_2·b_4_6·b_6_12 + b_2_1·a_5_12 + b_2_13·a_1_0·a_5_1
- b_5_8·b_7_13 + b_6_12·b_1_1·b_5_8 + b_6_12·b_1_13·b_3_4 + b_6_122
+ b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_8 + b_4_6·b_1_15·b_3_2 + b_4_6·b_1_18 + b_4_63 + b_2_13·b_6_12 + b_2_14·b_4_6 + b_2_13·a_6_5 + a_2_2·b_4_6·b_6_12 + c_8_19·b_1_1·b_3_2
- b_5_9·b_7_13 + b_5_8·b_7_15 + b_5_8·b_7_13 + b_6_12·b_1_1·b_5_8 + b_6_12·b_1_13·b_3_4
+ b_6_12·b_1_13·b_3_2 + b_6_122 + b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_8 + b_4_6·b_1_15·b_3_2 + b_4_6·b_1_18 + b_4_62·b_1_14 + b_4_63 + b_2_1·b_4_6·b_6_12 + b_2_14·b_4_6 + a_6_5·b_6_12 + b_2_13·a_1_0·a_5_1 + c_8_19·b_1_1·b_3_4
- a_5_1·b_7_13 + b_2_12·a_8_4 + b_2_13·a_1_0·a_5_1
- a_4_1·a_8_4
- a_6_5·b_6_12 + b_4_6·a_8_4 + a_2_2·b_4_6·b_6_12
- b_5_9·b_7_13 + b_5_8·b_7_13 + b_5_5·b_7_15 + b_1_13·b_9_23 + b_6_12·b_1_13·b_3_4
+ b_6_12·b_1_13·b_3_2 + b_6_122 + b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_9 + b_4_6·b_1_13·b_5_8 + b_4_62·b_1_1·b_3_4 + b_4_62·b_1_1·b_3_2 + b_4_63 + b_2_1·b_4_6·b_6_12 + b_2_14·b_4_6 + a_5_1·b_7_13 + a_6_5·b_6_12 + b_2_1·b_4_6·a_6_5 + b_2_13·a_6_5 + a_2_2·b_4_6·b_6_12 + b_2_1·a_5_12 + b_2_13·a_1_0·a_5_1
- b_5_9·b_7_13 + b_5_8·b_7_13 + b_3_2·b_9_23 + b_6_12·b_1_1·b_5_9 + b_6_12·b_1_1·b_5_8
+ b_6_12·b_1_13·b_3_4 + b_6_122 + b_4_62·b_1_1·b_3_2 + b_4_62·b_1_14 + b_4_63 + b_2_14·b_4_6 + a_2_2·b_4_6·b_6_12 + b_2_1·a_5_12 + b_2_13·a_1_0·a_5_1
- b_5_9·b_7_13 + b_5_8·b_7_13 + b_3_3·b_9_23 + b_6_12·b_1_1·b_5_9 + b_6_12·b_1_1·b_5_8
+ b_6_12·b_1_13·b_3_4 + b_6_122 + b_4_62·b_1_1·b_3_2 + b_4_62·b_1_14 + b_4_63 + b_2_1·b_4_6·b_6_12 + b_2_12·b_4_62 + a_6_5·b_6_12 + b_2_13·a_6_5 + a_2_2·b_2_1·c_8_19
- b_5_9·b_7_13 + b_3_4·b_9_23 + b_6_12·b_1_1·b_5_8 + b_6_12·b_1_13·b_3_4
+ b_6_12·b_1_13·b_3_2 + b_6_122 + b_4_6·b_1_1·b_7_13 + b_4_6·b_1_13·b_5_8 + b_4_6·b_1_15·b_3_2 + b_4_62·b_1_14 + b_4_63 + b_2_1·b_4_6·b_6_12 + b_2_13·b_6_12 + b_2_14·b_4_6 + a_6_5·b_6_12 + a_2_2·b_2_1·c_8_19
- a_6_5·b_7_13 + b_2_1·a_6_5·b_5_5 + b_2_12·b_4_6·a_5_1 + a_2_2·b_2_13·a_5_1
- a_6_5·b_7_15 + b_4_62·a_5_1 + b_2_1·a_6_5·b_5_5
- a_8_4·a_5_1
- a_8_4·b_5_8 + b_4_62·a_5_1 + b_2_1·a_6_5·b_5_5
- a_8_4·b_5_9 + b_2_1·a_6_5·b_5_5 + b_2_12·b_4_6·a_5_1
- a_8_4·b_5_5 + b_4_62·a_5_1 + b_2_1·a_6_5·b_5_5
- b_1_14·b_9_23 + b_6_12·b_7_13 + b_6_12·b_1_12·b_5_9 + b_6_12·b_1_12·b_5_8
+ b_6_122·b_1_1 + b_4_6·b_1_12·b_7_13 + b_4_6·b_1_19 + b_4_6·b_6_12·b_3_4 + b_4_6·b_6_12·b_3_2 + b_4_6·b_6_12·b_1_13 + b_4_62·b_5_9 + b_4_62·b_5_5 + b_4_62·b_1_12·b_3_4 + b_4_62·b_1_15 + b_4_63·b_1_1 + b_2_1·b_4_62·b_3_3 + b_2_13·b_4_6·b_3_3 + b_2_1·a_6_5·b_5_5 + b_2_12·b_4_6·a_5_1
- a_4_1·b_9_23 + a_2_2·b_2_13·a_5_1
- b_1_110·b_3_2 + b_6_12·b_7_15 + b_6_12·b_1_12·b_5_9 + b_6_12·b_1_14·b_3_2
+ b_4_6·b_9_23 + b_4_6·b_1_12·b_7_15 + b_4_6·b_1_19 + b_4_6·b_6_12·b_3_2 + b_4_6·b_6_12·b_1_13 + b_4_62·b_5_8 + b_4_62·b_5_5 + b_2_12·b_4_6·b_5_5 + b_2_13·b_4_6·b_3_3 + b_4_62·a_5_1 + b_2_1·a_6_5·b_5_5 + c_8_19·b_1_15
- b_7_132 + b_6_122·b_1_12 + b_4_6·b_1_13·b_7_15 + b_4_6·b_1_13·b_7_13
+ b_4_62·b_1_1·b_5_8 + b_4_63·b_1_12 + b_2_13·b_4_62 + b_2_15·b_4_6 + b_2_12·a_5_12 + b_2_14·a_1_0·a_5_1 + b_4_6·c_8_19·b_1_12
- b_6_12·a_8_4 + b_4_62·a_6_5 + b_2_12·b_4_6·a_6_5 + a_2_2·b_4_63
- b_7_152 + b_7_13·b_7_15 + b_6_12·b_1_13·b_5_9 + b_6_12·b_1_13·b_5_8
+ b_6_12·b_1_15·b_3_2 + b_4_6·b_1_13·b_7_13 + b_4_6·b_1_17·b_3_2 + b_4_6·b_1_110 + b_4_6·b_6_12·b_1_1·b_3_4 + b_4_6·b_6_12·b_1_1·b_3_2 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_13·b_3_2 + b_4_62·b_1_16 + b_2_1·b_4_63 + b_2_12·b_4_6·b_6_12 + b_2_14·b_6_12 + b_2_15·b_4_6 + b_2_1·b_4_6·a_8_4 + b_2_12·b_4_6·a_6_5 + b_2_14·a_6_5 + a_2_2·b_4_63 + b_2_12·a_5_12 + c_8_19·b_1_1·b_5_9
- a_6_5·a_8_4
- b_7_152 + b_7_13·b_7_15 + b_6_12·b_1_13·b_5_9 + b_6_12·b_1_13·b_5_8
+ b_6_12·b_1_15·b_3_2 + b_4_6·b_1_13·b_7_13 + b_4_6·b_1_17·b_3_2 + b_4_6·b_1_110 + b_4_6·b_6_12·b_1_1·b_3_4 + b_4_6·b_6_12·b_1_1·b_3_2 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_13·b_3_2 + b_4_62·b_1_16 + b_2_1·b_4_63 + b_2_12·b_4_6·b_6_12 + b_2_14·b_6_12 + b_2_15·b_4_6 + a_5_1·b_9_23 + a_2_2·b_4_63 + b_2_12·a_5_12 + c_8_19·b_1_1·b_5_9 + c_8_19·a_1_0·a_5_1
- b_7_152 + b_7_132 + b_5_8·b_9_23 + b_6_12·b_1_1·b_7_15 + b_6_12·b_1_1·b_7_13
+ b_4_6·b_1_13·b_7_15 + b_4_6·b_1_110 + b_4_6·b_6_12·b_1_1·b_3_2 + b_4_6·b_6_12·b_1_14 + b_4_62·b_1_1·b_5_9 + b_4_62·b_1_1·b_5_8 + b_4_63·b_1_12 + b_2_14·b_6_12 + b_4_62·a_6_5 + b_2_13·a_8_4 + c_8_19·b_1_1·b_5_9 + c_8_19·a_1_0·a_5_1
- b_7_152 + b_7_132 + b_6_12·b_1_1·b_7_15 + b_6_12·b_1_13·b_5_9
+ b_6_12·b_1_13·b_5_8 + b_6_12·b_1_15·b_3_2 + b_6_122·b_1_12 + b_4_6·b_1_1·b_9_23 + b_4_6·b_1_13·b_7_15 + b_4_6·b_1_13·b_7_13 + b_4_6·b_1_17·b_3_2 + b_4_6·b_6_12·b_1_1·b_3_4 + b_4_6·b_6_12·b_1_14 + b_4_62·b_1_1·b_5_9 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_13·b_3_4 + b_2_1·b_4_63 + b_2_15·b_4_6 + b_2_14·a_1_0·a_5_1 + c_8_19·b_1_1·b_5_8
- b_7_13·b_7_15 + b_5_9·b_9_23 + b_6_12·b_1_1·b_7_15 + b_6_12·b_1_1·b_7_13
+ b_6_12·b_1_13·b_5_9 + b_6_12·b_1_13·b_5_8 + b_6_12·b_1_15·b_3_2 + b_6_122·b_1_12 + b_4_6·b_1_13·b_7_15 + b_4_6·b_1_13·b_7_13 + b_4_6·b_6_12·b_1_1·b_3_4 + b_4_62·b_1_16 + b_4_63·b_1_12 + b_2_14·b_6_12 + b_2_12·b_4_6·a_6_5 + a_2_2·b_4_63 + b_2_12·a_5_12 + b_2_14·a_1_0·a_5_1 + a_2_2·b_2_12·c_8_19
- b_7_13·b_7_15 + b_7_132 + b_5_5·b_9_23 + b_6_12·b_1_1·b_7_15 + b_6_122·b_1_12
+ b_4_6·b_1_13·b_7_13 + b_4_6·b_1_110 + b_4_6·b_6_12·b_1_1·b_3_4 + b_4_6·b_6_12·b_1_1·b_3_2 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_16 + b_4_63·b_1_12 + b_2_1·b_4_63 + b_2_12·b_4_6·b_6_12 + b_2_15·b_4_6 + b_4_62·a_6_5 + b_2_13·a_8_4 + b_2_12·a_5_12 + c_8_19·b_1_1·b_5_9 + c_8_19·b_1_1·b_5_8
- a_8_4·b_7_15 + b_4_6·a_6_5·b_5_5 + b_2_12·a_6_5·b_5_5
- a_8_4·b_7_13 + b_2_1·b_4_62·a_5_1 + b_2_13·b_4_6·a_5_1
- b_6_12·b_9_23 + b_6_122·b_3_2 + b_4_6·b_1_12·b_9_23 + b_4_6·b_1_18·b_3_2
+ b_4_6·b_1_111 + b_4_6·b_6_12·b_5_9 + b_4_6·b_6_12·b_1_15 + b_4_62·b_7_15 + b_4_62·b_1_14·b_3_2 + b_4_62·b_6_12·b_1_1 + b_4_63·b_3_4 + b_4_63·b_3_3 + b_4_63·b_1_13 + b_2_1·b_4_62·b_5_5 + b_2_12·b_4_62·b_3_3 + b_2_13·b_4_6·b_5_5 + b_2_14·b_4_6·b_3_3 + b_2_12·a_6_5·b_5_5 + b_2_13·b_4_6·a_5_1 + c_8_19·b_1_14·b_3_2
- a_6_5·b_9_23 + b_4_6·a_6_5·b_5_5 + b_2_13·b_4_6·a_5_1 + a_5_13 + a_2_2·c_8_19·a_5_1
- a_8_42
- b_7_15·b_9_23 + b_6_12·b_1_13·b_7_13 + b_6_122·b_1_1·b_3_2 + b_6_122·b_1_14
+ b_4_6·b_1_19·b_3_2 + b_4_6·b_6_12·b_1_1·b_5_9 + b_4_6·b_6_12·b_1_16 + b_4_6·b_6_122 + b_4_62·b_1_1·b_7_15 + b_4_62·b_1_15·b_3_2 + b_4_63·b_1_1·b_3_2 + b_4_64 + b_2_1·b_4_62·b_6_12 + b_2_12·b_4_63 + b_2_14·b_4_62 + b_2_15·b_6_12 + b_2_16·b_4_6 + b_2_14·a_8_4 + a_2_2·b_4_62·b_6_12 + b_2_15·a_1_0·a_5_1 + c_8_19·b_1_1·b_7_13 + b_6_12·c_8_19·b_1_12 + b_4_6·c_8_19·b_1_1·b_3_4 + b_4_6·c_8_19·b_1_1·b_3_2 + b_4_6·c_8_19·b_1_14 + b_2_1·c_8_19·a_1_0·a_5_1
- b_7_13·b_9_23 + b_6_122·b_1_1·b_3_2 + b_4_6·b_1_19·b_3_2 + b_4_6·b_1_112
+ b_4_6·b_6_12·b_1_13·b_3_2 + b_4_6·b_6_12·b_1_16 + b_4_6·b_6_122 + b_4_62·b_1_1·b_7_13 + b_4_62·b_1_18 + b_4_63·b_1_1·b_3_4 + b_4_64 + b_2_13·b_4_6·b_6_12 + b_2_14·b_4_62 + b_2_15·b_6_12 + b_2_1·b_4_62·a_6_5 + b_2_12·b_4_6·a_8_4 + b_2_14·a_8_4 + b_2_15·a_6_5 + a_2_2·b_4_62·b_6_12 + b_2_13·a_5_12 + c_8_19·b_1_15·b_3_2 + b_4_6·c_8_19·b_1_1·b_3_4 + b_4_6·c_8_19·b_1_1·b_3_2 + a_2_2·b_2_13·c_8_19 + b_2_1·c_8_19·a_1_0·a_5_1
- a_8_4·b_9_23 + b_4_63·a_5_1 + b_2_1·b_4_6·a_6_5·b_5_5 + b_2_13·a_6_5·b_5_5
+ b_2_14·b_4_6·a_5_1 + a_2_2·b_2_1·c_8_19·a_5_1
- b_9_232 + b_4_6·b_6_12·b_1_13·b_5_9 + b_4_6·b_6_12·b_1_13·b_5_8
+ b_4_6·b_6_122·b_1_12 + b_4_62·b_6_12·b_1_1·b_3_4 + b_4_62·b_6_12·b_1_1·b_3_2 + b_4_63·b_1_1·b_5_9 + b_4_63·b_1_13·b_3_2 + b_4_63·b_1_16 + b_2_1·b_4_64 + b_2_17·b_4_6 + b_2_14·a_5_12 + b_2_16·a_1_0·a_5_1 + b_4_6·c_8_19·b_1_1·b_5_8
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_19, a Duflot regular element of degree 8
- b_1_14 + b_4_6 + b_2_12, an element of degree 4
- b_3_3, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- a_5_1 → 0, an element of degree 5
- b_5_5 → 0, an element of degree 5
- b_5_8 → 0, an element of degree 5
- b_5_9 → 0, an element of degree 5
- a_6_5 → 0, an element of degree 6
- b_6_12 → 0, an element of degree 6
- b_7_13 → 0, an element of degree 7
- b_7_15 → 0, an element of degree 7
- a_8_4 → 0, an element of degree 8
- c_8_19 → c_1_08, an element of degree 8
- b_9_23 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_6 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_1 → 0, an element of degree 5
- b_5_5 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_8 → c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_0·c_1_14 + c_1_04·c_1_1, an element of degree 5
- b_5_9 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2
+ c_1_0·c_1_14 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_1, an element of degree 5
- a_6_5 → 0, an element of degree 6
- b_6_12 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22 + c_1_0·c_1_15
+ c_1_02·c_1_14, an element of degree 6
- b_7_13 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23 + c_1_0·c_1_16
+ c_1_02·c_1_13·c_1_22 + c_1_02·c_1_14·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_15 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
+ c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_0·c_1_16 + c_1_02·c_1_15 + c_1_03·c_1_14 + c_1_04·c_1_13 + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
- a_8_4 → 0, an element of degree 8
- c_8_19 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8
- b_9_23 → c_1_1·c_1_28 + c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24
+ c_1_16·c_1_23 + c_1_17·c_1_22 + c_1_0·c_1_16·c_1_22 + c_1_0·c_1_17·c_1_2 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_15·c_1_22 + c_1_03·c_1_14·c_1_22 + c_1_03·c_1_15·c_1_2 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_13·c_1_22 + c_1_05·c_1_12·c_1_22 + c_1_05·c_1_13·c_1_2 + c_1_06·c_1_1·c_1_22 + c_1_06·c_1_12·c_1_2, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- b_2_1 → c_1_12, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_6 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_1 → 0, an element of degree 5
- b_5_5 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_8 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_9 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- a_6_5 → 0, an element of degree 6
- b_6_12 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22, an element of degree 6
- b_7_13 → c_1_13·c_1_24 + c_1_16·c_1_2, an element of degree 7
- b_7_15 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_15·c_1_22, an element of degree 7
- a_8_4 → 0, an element of degree 8
- c_8_19 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_23 → c_1_1·c_1_28 + c_1_15·c_1_24 + c_1_17·c_1_22 + c_1_18·c_1_2, an element of degree 9
|