Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 730 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t8 + t7 + 3·t5 + 2·t3 + t2 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 17 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- a_3_5, a nilpotent element of degree 3
- a_3_7, a nilpotent element of degree 3
- b_3_6, an element of degree 3
- c_4_10, a Duflot regular element of degree 4
- a_5_11, a nilpotent element of degree 5
- a_5_12, a nilpotent element of degree 5
- a_5_13, a nilpotent element of degree 5
- a_5_15, a nilpotent element of degree 5
- a_6_19, a nilpotent element of degree 6
- a_7_22, a nilpotent element of degree 7
- c_8_30, a Duflot regular element of degree 8
- a_9_35, a nilpotent element of degree 9
Ring relations
There are 93 minimal relations of maximal degree 18:
- a_1_12 + a_1_02
- a_1_0·a_1_1 + a_1_02
- a_1_22 + a_1_0·a_1_2 + a_1_02
- a_1_03
- a_2_3·a_1_1 + a_2_3·a_1_0
- b_2_4·a_1_1 + b_2_4·a_1_0 + a_1_02·a_1_2
- a_2_32 + a_2_3·a_1_02
- a_1_1·a_3_5 + b_2_4·a_1_0·a_1_2 + b_2_4·a_1_02 + a_2_32
- a_1_0·a_3_5 + b_2_4·a_1_0·a_1_2 + b_2_4·a_1_02
- a_2_3·b_2_4 + a_1_1·a_3_7 + b_2_4·a_1_02 + a_2_32 + a_2_3·a_1_0·a_1_2
- a_2_3·b_2_4 + a_1_0·a_3_7 + b_2_4·a_1_02
- a_1_1·b_3_6 + a_1_0·b_3_6 + a_1_2·a_3_5 + b_2_4·a_1_02 + a_2_32
- b_2_4·a_1_02·a_1_2
- a_2_3·a_3_7
- a_2_3·a_3_5 + a_1_0·a_1_2·a_3_7 + a_1_02·a_3_7
- b_2_4·a_3_5 + b_2_42·a_1_2 + b_2_42·a_1_0 + a_1_02·b_3_6
- a_3_52 + b_2_42·a_1_0·a_1_2
- a_3_72 + b_2_4·a_1_0·a_3_7 + b_2_42·a_1_0·a_1_2 + b_2_42·a_1_02
+ a_1_02·a_1_2·a_3_7
- a_3_72 + a_3_5·a_3_7 + b_2_4·a_1_2·a_3_7 + b_2_42·a_1_0·a_1_2 + b_2_42·a_1_02
+ a_2_3·a_1_0·b_3_6 + a_1_02·a_1_2·a_3_7
- a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + b_2_4·a_1_0·b_3_6 + b_2_42·a_1_02
+ c_4_10·a_1_1·a_1_2 + c_4_10·a_1_0·a_1_2
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_1·a_5_11 + b_2_42·a_1_0·a_1_2
+ a_1_02·a_1_2·a_3_7 + c_4_10·a_1_1·a_1_2
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_0·a_5_11 + b_2_42·a_1_0·a_1_2
+ a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_1·a_1_2
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_1·a_5_12 + b_2_42·a_1_0·a_1_2
+ a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_1·a_1_2 + c_4_10·a_1_02
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_0·a_5_12 + b_2_42·a_1_0·a_1_2
+ c_4_10·a_1_1·a_1_2 + c_4_10·a_1_02
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_2·a_5_12 + a_1_1·a_5_13
+ b_2_42·a_1_0·a_1_2 + a_2_3·a_1_2·b_3_6 + c_4_10·a_1_1·a_1_2 + c_4_10·a_1_02
- b_3_62 + b_2_43 + b_2_4·a_1_0·b_3_6 + a_1_2·a_5_11 + a_1_0·a_5_13
+ b_2_42·a_1_0·a_1_2 + b_2_42·a_1_02 + a_2_3·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_02
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_3_72 + a_3_5·a_3_7
+ a_1_2·a_5_13 + b_2_4·a_1_2·a_3_7 + b_2_42·a_1_02 + a_2_3·a_1_2·b_3_6 + a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_1·a_1_2 + c_4_10·a_1_02
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_3_72 + a_1_2·a_5_12
+ a_1_1·a_5_15 + b_2_42·a_1_0·a_1_2 + b_2_42·a_1_02 + a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_1·a_1_2
- b_3_62 + b_2_43 + b_2_4·a_1_0·b_3_6 + a_3_72 + a_1_2·a_5_11 + a_1_0·a_5_15
+ b_2_42·a_1_0·a_1_2 + a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7
- b_3_62 + b_2_43 + a_3_5·b_3_6 + b_2_4·a_1_2·b_3_6 + a_1_2·a_5_15 + b_2_4·a_1_2·a_3_7
+ b_2_42·a_1_02 + a_1_02·a_1_2·b_3_6 + a_1_02·a_1_2·a_3_7 + c_4_10·a_1_02
- a_1_02·a_5_11
- a_2_3·a_5_12 + a_2_3·a_5_11 + a_2_3·a_1_0·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0
- b_2_4·a_5_12 + b_2_4·a_5_11 + b_2_4·a_1_02·b_3_6 + a_1_02·a_5_13
+ b_2_4·a_1_0·a_1_2·a_3_7 + a_2_3·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0
- a_2_3·a_5_15 + a_2_3·a_5_13 + b_2_4·a_1_0·a_1_2·a_3_7 + a_2_3·c_4_10·a_1_0
- b_2_4·a_5_15 + b_2_4·a_5_13 + b_2_42·a_3_7 + b_2_43·a_1_2 + a_1_2·a_3_7·b_3_6
+ b_2_4·a_1_02·b_3_6 + b_2_4·a_1_0·a_1_2·a_3_7 + a_2_3·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0 + c_4_10·a_1_02·a_1_2
- b_2_4·a_5_12 + b_2_4·a_5_11 + a_1_0·a_3_7·b_3_6 + a_6_19·a_1_1 + b_2_4·a_1_0·a_1_2·b_3_6
+ a_2_3·a_5_11 + b_2_4·a_1_02·a_3_7 + a_2_3·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0 + a_2_3·c_4_10·a_1_0 + c_4_10·a_1_02·a_1_2
- b_2_4·a_5_12 + b_2_4·a_5_11 + a_1_0·a_3_7·b_3_6 + a_6_19·a_1_0 + b_2_4·a_1_0·a_1_2·b_3_6
+ a_2_3·a_5_11 + b_2_4·a_1_02·a_3_7 + a_2_3·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0 + a_2_3·c_4_10·a_1_0 + c_4_10·a_1_02·a_1_2
- a_1_2·a_3_7·b_3_6 + a_6_19·a_1_2 + b_2_4·a_1_02·b_3_6 + a_2_3·a_5_13 + a_2_3·a_5_11
+ b_2_4·a_1_02·a_3_7 + a_2_3·c_4_10·a_1_0
- a_3_5·a_5_12 + a_3_5·a_5_11 + a_2_3·a_1_0·a_5_11 + b_2_4·c_4_10·a_1_0·a_1_2
+ b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_02
- b_3_6·a_5_12 + b_3_6·a_5_11 + a_3_7·a_5_12 + a_3_7·a_5_11 + a_3_5·a_5_13
+ b_2_4·a_1_0·a_5_13 + b_2_4·a_1_0·a_5_11 + b_2_43·a_1_02 + a_2_3·a_1_0·a_5_13 + a_2_3·a_1_0·a_5_11 + c_4_10·a_1_0·b_3_6 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_02
- b_3_6·a_5_12 + b_3_6·a_5_11 + a_3_7·a_5_15 + a_3_7·a_5_13 + a_3_5·a_5_13 + a_3_5·a_5_11
+ b_2_4·a_1_0·a_5_11 + b_2_42·a_1_2·a_3_7 + b_2_42·a_1_0·a_3_7 + b_2_43·a_1_0·a_1_2 + a_2_3·a_1_0·a_5_11 + c_4_10·a_1_0·b_3_6 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_0·a_1_2
- a_3_5·a_5_15 + a_3_5·a_5_13 + b_2_42·a_1_2·a_3_7 + b_2_42·a_1_0·a_3_7
+ b_2_43·a_1_02 + b_2_4·c_4_10·a_1_0·a_1_2 + b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_02
- b_3_6·a_5_15 + b_3_6·a_5_13 + b_3_6·a_5_12 + b_3_6·a_5_11 + b_2_4·a_3_7·b_3_6
+ b_2_42·a_1_2·b_3_6 + a_3_7·a_5_12 + a_3_7·a_5_11 + a_3_5·a_5_13 + b_2_4·a_1_0·a_5_13 + b_2_4·a_1_0·a_5_11 + b_2_42·a_1_2·a_3_7 + c_4_10·a_1_2·a_3_5 + c_4_10·a_1_0·a_3_7
- a_3_7·a_5_12 + a_3_7·a_5_11 + a_3_5·a_5_11 + b_2_4·a_1_0·a_5_13 + a_2_3·a_6_19
+ a_2_3·a_1_0·a_5_11 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2 + b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_0·a_1_2
- b_3_6·a_5_12 + b_3_6·a_5_11 + a_3_5·a_5_13 + b_2_4·a_1_0·a_5_13 + b_2_4·a_1_0·a_5_11
+ b_2_43·a_1_02 + a_6_19·a_1_02 + c_4_10·a_1_0·b_3_6 + b_2_4·c_4_10·a_1_02
- b_3_6·a_5_12 + b_3_6·a_5_11 + b_2_4·a_3_7·b_3_6 + b_2_4·a_6_19 + b_2_42·a_1_2·b_3_6
+ b_2_42·a_1_0·b_3_6 + a_3_7·a_5_11 + a_3_5·a_5_13 + b_2_42·a_1_2·a_3_7 + b_2_42·a_1_0·a_3_7 + b_2_43·a_1_02 + a_2_3·a_1_0·a_5_11 + c_4_10·a_1_0·b_3_6 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2 + b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_02
- b_3_6·a_5_12 + b_3_6·a_5_11 + a_3_7·a_5_12 + a_3_7·a_5_11 + a_3_5·a_5_13 + a_3_5·a_5_11
+ b_2_4·a_1_0·a_5_11 + b_2_43·a_1_02 + a_6_19·a_1_0·a_1_2 + c_4_10·a_1_0·b_3_6 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2
- a_3_7·a_5_12 + a_3_7·a_5_11 + a_1_1·a_7_22 + b_2_42·a_1_0·a_3_7 + b_2_43·a_1_0·a_1_2
+ b_2_4·c_4_10·a_1_0·a_1_2
- a_3_7·a_5_12 + a_3_7·a_5_11 + a_1_0·a_7_22 + b_2_42·a_1_0·a_3_7 + b_2_43·a_1_0·a_1_2
+ a_2_3·a_1_0·a_5_11 + b_2_4·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_02
- a_3_7·a_5_12 + a_3_7·a_5_11 + a_3_5·a_5_13 + a_1_2·a_7_22 + b_2_4·a_1_0·a_5_13
+ b_2_4·a_1_0·a_5_11 + b_2_42·a_1_2·a_3_7 + b_2_43·a_1_0·a_1_2 + b_2_43·a_1_02 + c_4_10·a_1_2·a_3_7 + c_4_10·a_1_2·a_3_5 + c_4_10·a_1_0·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2 + b_2_4·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_02
- a_6_19·a_3_7 + b_2_4·a_6_19·a_1_2 + b_2_42·a_1_0·a_1_2·b_3_6 + a_1_0·a_3_7·a_5_11
+ b_2_42·a_1_0·a_1_2·a_3_7 + a_2_3·a_1_02·a_5_13 + c_4_10·a_1_0·a_1_2·a_3_7
- a_6_19·a_3_7 + a_6_19·a_3_5 + b_2_4·a_6_19·a_1_0 + b_2_42·a_1_0·a_1_2·b_3_6
+ a_1_0·a_3_7·a_5_11 + b_2_42·a_1_0·a_1_2·a_3_7 + b_2_42·a_1_02·a_3_7 + a_2_3·a_1_02·a_5_13 + c_4_10·a_1_0·a_1_2·a_3_7
- a_2_3·a_7_22 + b_2_42·a_1_0·a_1_2·a_3_7 + a_2_3·a_1_02·a_5_13
+ c_4_10·a_1_0·a_1_2·a_3_7
- b_2_4·a_7_22 + b_2_43·a_3_7 + b_2_44·a_1_2 + a_1_0·b_3_6·a_5_11 + b_2_4·a_6_19·a_1_0
+ b_2_42·a_1_0·a_1_2·b_3_6 + b_2_42·a_1_02·b_3_6 + a_1_0·a_3_7·a_5_13 + b_2_4·c_4_10·a_3_7 + b_2_42·c_4_10·a_1_2 + c_4_10·a_1_0·a_1_2·a_3_7
- a_5_122 + a_5_112 + c_4_102·a_1_02
- a_5_11·a_5_12 + a_5_112 + a_1_02·a_3_7·a_5_13 + c_4_10·a_1_0·a_5_11
+ c_4_10·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7
- a_5_132 + a_5_11·a_5_13 + a_5_112 + a_2_3·b_3_6·a_5_13 + a_2_3·b_3_6·a_5_11
+ a_1_02·b_3_6·a_5_13 + c_4_10·a_1_0·a_5_13 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_102·a_1_02
- a_5_13·a_5_15 + a_5_12·a_5_15 + a_5_12·a_5_13 + a_5_11·a_5_13 + a_5_112
+ b_2_4·a_3_7·a_5_13 + b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + a_2_3·b_3_6·a_5_11 + a_1_02·b_3_6·a_5_13 + c_4_10·a_1_1·a_5_13 + c_4_10·a_1_0·a_5_13 + c_4_10·a_1_0·a_5_11 + b_2_4·c_4_10·a_1_0·a_3_7 + a_2_3·c_4_10·a_1_0·b_3_6
- a_5_152 + a_5_11·a_5_13 + a_5_112 + b_2_43·a_1_0·a_3_7 + a_2_3·b_3_6·a_5_13
+ a_2_3·b_3_6·a_5_11 + a_1_02·b_3_6·a_5_13 + c_4_10·a_1_0·a_5_13 + a_2_3·c_4_10·a_1_0·b_3_6
- a_5_13·a_5_15 + a_5_11·a_5_15 + a_5_11·a_5_12 + b_2_4·a_3_7·a_5_13 + b_2_4·a_3_7·a_5_11
+ b_2_42·a_1_0·a_5_13 + a_2_3·b_3_6·a_5_11 + a_1_02·b_3_6·a_5_13 + b_2_4·a_6_19·a_1_02 + c_4_10·a_1_1·a_5_13 + c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_02
- a_5_11·a_5_15 + a_5_11·a_5_13 + b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13
+ b_2_42·a_1_0·a_5_11 + a_2_3·b_3_6·a_5_13 + a_2_3·b_3_6·a_5_11 + a_1_02·b_3_6·a_5_13 + b_2_4·a_6_19·a_1_0·a_1_2 + c_4_10·a_1_0·a_5_11 + b_2_42·c_4_10·a_1_0·a_1_2 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7
- a_5_13·a_5_15 + a_5_11·a_5_15 + a_5_11·a_5_12 + a_3_7·a_7_22 + b_2_4·a_3_7·a_5_13
+ b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + b_2_43·a_1_2·a_3_7 + b_2_43·a_1_0·a_3_7 + b_2_44·a_1_0·a_1_2 + b_2_44·a_1_02 + a_1_02·b_3_6·a_5_13 + c_4_10·a_1_1·a_5_13 + c_4_10·a_1_0·a_5_13 + b_2_4·c_4_10·a_1_2·a_3_7 + b_2_4·c_4_10·a_1_0·a_3_7 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_02
- a_5_11·a_5_15 + a_5_11·a_5_13 + a_5_11·a_5_12 + a_5_112 + a_3_5·a_7_22
+ b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + b_2_42·a_1_0·a_5_11 + b_2_43·a_1_2·a_3_7 + b_2_43·a_1_0·a_3_7 + b_2_44·a_1_02 + a_2_3·b_3_6·a_5_13 + a_2_3·b_3_6·a_5_11 + b_2_4·c_4_10·a_1_2·a_3_7 + b_2_4·c_4_10·a_1_0·a_3_7 + b_2_42·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7
- b_3_6·a_7_22 + b_2_42·a_6_19 + b_2_43·a_1_0·b_3_6 + a_5_13·a_5_15 + a_5_11·a_5_13
+ a_5_112 + b_2_4·a_3_7·a_5_13 + b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + b_2_42·a_1_0·a_5_11 + b_2_43·a_1_2·a_3_7 + a_2_3·b_3_6·a_5_11 + c_4_10·a_3_7·b_3_6 + b_2_4·c_4_10·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0·a_3_7 + b_2_42·c_4_10·a_1_0·a_1_2 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_1·a_1_2 + c_4_102·a_1_0·a_1_2 + c_4_102·a_1_02
- a_5_13·a_5_15 + a_5_11·a_5_15 + a_5_11·a_5_12 + a_5_112 + b_2_4·a_3_7·a_5_13
+ b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + b_2_44·a_1_0·a_1_2 + b_2_44·a_1_02 + a_2_3·b_3_6·a_5_11 + c_8_30·a_1_02 + c_4_10·a_1_1·a_5_13 + c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6
- a_5_12·a_5_13 + a_5_11·a_5_15 + a_5_11·a_5_13 + a_5_112 + b_2_4·a_3_7·a_5_11
+ b_2_42·a_1_0·a_5_13 + b_2_42·a_1_0·a_5_11 + b_2_44·a_1_02 + a_1_02·b_3_6·a_5_13 + c_8_30·a_1_1·a_1_2 + c_4_10·a_1_0·a_5_11 + b_2_42·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_02
- a_5_11·a_5_15 + a_5_112 + b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13
+ b_2_42·a_1_0·a_5_11 + b_2_44·a_1_02 + c_8_30·a_1_0·a_1_2 + c_4_10·a_1_0·a_5_13 + c_4_10·a_1_0·a_5_11 + b_2_42·c_4_10·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_02
- a_5_12·a_5_13 + a_5_11·a_5_15 + a_5_11·a_5_13 + a_5_11·a_5_12 + a_5_112 + a_1_1·a_9_35
+ b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_13 + b_2_44·a_1_0·a_1_2 + a_2_3·b_3_6·a_5_13 + a_1_02·b_3_6·a_5_13 + c_4_10·a_1_1·a_5_13 + b_2_4·c_4_10·a_1_0·a_3_7 + b_2_42·c_4_10·a_1_0·a_1_2 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7 + c_4_102·a_1_1·a_1_2 + c_4_102·a_1_02
- a_5_11·a_5_15 + a_5_11·a_5_12 + a_5_112 + a_1_0·a_9_35 + b_2_4·a_3_7·a_5_11
+ b_2_42·a_1_0·a_5_13 + b_2_44·a_1_0·a_1_2 + a_2_3·b_3_6·a_5_13 + b_2_4·c_4_10·a_1_0·a_3_7 + b_2_42·c_4_10·a_1_0·a_1_2 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7 + c_4_102·a_1_0·a_1_2 + c_4_102·a_1_02
- a_5_13·a_5_15 + a_5_12·a_5_13 + a_5_11·a_5_15 + a_5_11·a_5_13 + a_1_2·a_9_35
+ b_2_4·a_3_7·a_5_13 + b_2_4·a_3_7·a_5_11 + b_2_42·a_1_0·a_5_11 + b_2_44·a_1_0·a_1_2 + b_2_44·a_1_02 + a_1_02·b_3_6·a_5_13 + c_4_10·a_1_0·a_5_13 + b_2_4·c_4_10·a_1_2·a_3_7 + b_2_42·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_0·b_3_6 + c_4_10·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·a_1_2·a_3_7 + c_4_102·a_1_1·a_1_2 + c_4_102·a_1_0·a_1_2
- a_6_19·a_5_12 + a_6_19·a_5_11 + b_2_43·a_1_02·a_3_7 + a_2_3·a_1_0·b_3_6·a_5_13
+ c_4_10·a_6_19·a_1_0
- a_6_19·a_5_15 + a_6_19·a_5_13 + b_2_43·a_1_0·a_1_2·b_3_6 + b_2_4·a_1_0·a_3_7·a_5_11
+ c_4_10·a_6_19·a_1_0 + b_2_4·c_4_10·a_1_0·a_1_2·a_3_7
- a_3_7·b_3_6·a_5_11 + a_6_19·a_5_11 + b_2_4·a_1_0·b_3_6·a_5_13
+ b_2_4·a_1_0·a_3_7·a_5_13 + b_2_43·a_1_02·a_3_7 + b_2_4·c_4_10·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_02·b_3_6 + a_2_3·c_8_30·a_1_0 + a_2_3·c_4_10·a_5_11 + c_8_30·a_1_02·a_1_2 + a_2_3·c_4_10·a_1_0·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0 + c_4_102·a_1_02·a_1_2
- a_3_7·b_3_6·a_5_13 + a_3_7·b_3_6·a_5_11 + a_6_19·a_5_13 + a_6_19·a_5_11
+ b_2_4·a_1_0·b_3_6·a_5_11 + b_2_4·a_1_0·a_3_7·a_5_11 + b_2_4·c_4_10·a_1_0·a_1_2·b_3_6 + a_2_3·c_8_30·a_1_2 + a_2_3·c_4_10·a_5_11 + c_4_10·a_1_02·a_5_13 + b_2_4·c_4_10·a_1_0·a_1_2·a_3_7 + b_2_4·c_4_10·a_1_02·a_3_7 + a_2_3·c_4_10·a_1_0·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0 + c_4_102·a_1_02·a_1_2
- a_3_7·b_3_6·a_5_13 + a_6_19·a_5_13 + b_2_4·a_1_0·b_3_6·a_5_13
+ b_2_4·a_1_0·b_3_6·a_5_11 + a_2_3·a_9_35 + b_2_4·a_1_0·a_3_7·a_5_13 + b_2_43·a_1_02·a_3_7 + b_2_4·c_4_10·a_1_02·b_3_6 + a_2_3·c_4_10·a_5_13 + c_8_30·a_1_02·a_1_2 + c_4_10·a_1_02·a_5_13 + b_2_4·c_4_10·a_1_02·a_3_7 + a_2_3·c_4_10·a_1_0·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_2 + a_2_3·c_4_102·a_1_0
- b_2_4·a_9_35 + b_2_43·a_5_11 + a_3_7·b_3_6·a_5_13 + b_2_42·a_6_19·a_1_0
+ b_2_43·a_1_0·a_1_2·b_3_6 + b_2_4·a_1_0·a_3_7·a_5_13 + b_2_42·a_1_02·a_5_13 + b_2_43·a_1_0·a_1_2·a_3_7 + a_2_3·a_1_0·b_3_6·a_5_13 + b_2_4·c_8_30·a_1_2 + b_2_4·c_8_30·a_1_0 + b_2_4·c_4_10·a_5_13 + b_2_42·c_4_10·a_3_7 + b_2_43·c_4_10·a_1_2 + c_8_30·a_1_02·a_1_2 + c_4_10·a_1_02·a_5_13 + b_2_4·c_4_10·a_1_02·a_3_7 + a_2_3·c_4_10·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_102·a_1_2 + b_2_4·c_4_102·a_1_0 + c_4_102·a_1_02·a_1_2
- a_5_12·a_7_22 + a_5_11·a_7_22 + a_6_192 + b_2_44·a_1_0·a_3_7 + b_2_45·a_1_02
+ b_2_4·a_1_02·a_3_7·a_5_13 + b_2_42·c_4_10·a_1_0·a_3_7 + b_2_43·c_4_10·a_1_0·a_1_2 + c_4_102·a_1_0·a_3_7 + b_2_4·c_4_102·a_1_0·a_1_2 + a_2_3·c_4_102·a_1_0·a_1_2
- a_5_15·a_7_22 + a_5_13·a_7_22 + a_6_192 + b_2_45·a_1_02 + a_6_19·a_1_0·a_5_11
+ b_2_42·a_6_19·a_1_0·a_1_2 + b_2_43·c_4_10·a_1_0·a_1_2 + c_4_10·a_6_19·a_1_02 + a_2_3·c_4_10·a_1_0·a_5_13 + c_4_102·a_1_0·a_3_7 + b_2_4·c_4_102·a_1_0·a_1_2
- a_5_13·a_7_22 + a_5_11·a_7_22 + a_6_192 + b_2_42·a_3_7·a_5_13 + b_2_42·a_3_7·a_5_11
+ b_2_43·a_1_0·a_5_13 + b_2_44·a_1_0·a_3_7 + b_2_45·a_1_02 + a_6_19·a_1_0·a_5_13 + a_6_19·a_1_0·a_5_11 + b_2_4·a_1_02·a_3_7·a_5_13 + c_8_30·a_1_2·a_3_5 + c_4_10·a_3_7·a_5_13 + c_4_10·a_3_7·a_5_11 + c_4_10·a_1_2·a_7_22 + b_2_4·c_8_30·a_1_02 + b_2_4·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_2·a_3_7 + b_2_43·c_4_10·a_1_02 + c_4_10·a_6_19·a_1_0·a_1_2 + c_4_10·a_6_19·a_1_02 + c_4_102·a_1_2·a_3_7 + c_4_102·a_1_2·a_3_5 + a_2_3·c_4_102·a_1_02
- a_6_192 + b_2_44·a_1_0·a_3_7 + b_2_45·a_1_02 + b_2_42·a_6_19·a_1_02
+ a_2_3·c_8_30·a_1_02
- a_5_11·a_7_22 + a_6_192 + b_2_42·a_3_7·a_5_11 + b_2_43·a_1_0·a_5_13
+ b_2_43·a_1_0·a_5_11 + b_2_44·a_1_0·a_3_7 + b_2_45·a_1_02 + a_6_19·a_1_0·a_5_11 + b_2_4·a_1_02·b_3_6·a_5_13 + b_2_42·a_6_19·a_1_0·a_1_2 + b_2_42·a_6_19·a_1_02 + b_2_4·a_1_02·a_3_7·a_5_13 + c_4_10·a_3_7·a_5_11 + b_2_4·c_4_10·a_1_0·a_5_13 + b_2_4·c_4_10·a_1_0·a_5_11 + b_2_43·c_4_10·a_1_0·a_1_2 + b_2_43·c_4_10·a_1_02 + c_4_10·a_6_19·a_1_0·a_1_2 + a_2_3·c_8_30·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_0·a_5_13 + b_2_4·c_4_102·a_1_0·a_1_2 + b_2_4·c_4_102·a_1_02 + a_2_3·c_4_102·a_1_0·a_1_2
- a_3_7·a_9_35 + b_2_42·a_3_7·a_5_11 + a_6_19·a_1_0·a_5_13 + c_8_30·a_1_2·a_3_7
+ c_8_30·a_1_0·a_3_7 + c_4_10·a_3_7·a_5_13 + b_2_42·c_4_10·a_1_2·a_3_7 + b_2_42·c_4_10·a_1_0·a_3_7 + b_2_43·c_4_10·a_1_0·a_1_2 + b_2_43·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_0·a_5_13 + c_4_102·a_1_2·a_3_7 + c_4_102·a_1_0·a_3_7 + a_2_3·c_4_102·a_1_0·a_1_2 + a_2_3·c_4_102·a_1_02
- a_5_13·a_7_22 + a_3_5·a_9_35 + a_6_192 + b_2_42·a_3_7·a_5_13 + b_2_43·a_1_0·a_5_13
+ b_2_43·a_1_0·a_5_11 + b_2_44·a_1_0·a_3_7 + b_2_45·a_1_02 + a_6_19·a_1_0·a_5_11 + b_2_4·a_1_02·b_3_6·a_5_13 + b_2_42·a_6_19·a_1_0·a_1_2 + b_2_42·a_6_19·a_1_02 + b_2_4·a_1_02·a_3_7·a_5_13 + c_4_10·a_3_7·a_5_13 + b_2_4·c_8_30·a_1_0·a_1_2 + b_2_4·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_2·a_3_7 + b_2_42·c_4_10·a_1_0·a_3_7 + b_2_43·c_4_10·a_1_0·a_1_2 + b_2_43·c_4_10·a_1_02 + a_2_3·c_4_10·a_1_0·a_5_11 + c_4_102·a_1_2·a_3_5 + b_2_4·c_4_102·a_1_0·a_1_2 + b_2_4·c_4_102·a_1_02
- b_3_6·a_9_35 + b_2_42·b_3_6·a_5_11 + a_5_13·a_7_22 + a_6_192 + b_2_43·a_1_0·a_5_11
+ a_6_19·a_1_0·a_5_13 + a_6_19·a_1_0·a_5_11 + b_2_42·a_6_19·a_1_0·a_1_2 + b_2_4·a_1_02·a_3_7·a_5_13 + c_8_30·a_1_2·b_3_6 + c_8_30·a_1_0·b_3_6 + c_4_10·b_3_6·a_5_13 + b_2_4·c_4_10·a_6_19 + b_2_42·c_4_10·a_1_0·b_3_6 + c_4_10·a_3_7·a_5_13 + c_4_10·a_3_7·a_5_11 + b_2_4·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_2·a_3_7 + b_2_42·c_4_10·a_1_0·a_3_7 + b_2_43·c_4_10·a_1_02 + c_4_10·a_6_19·a_1_0·a_1_2 + a_2_3·c_4_10·a_1_0·a_5_11 + c_4_102·a_1_2·b_3_6 + c_4_102·a_1_0·b_3_6 + c_4_102·a_1_2·a_3_5 + c_4_102·a_1_0·a_3_7 + b_2_4·c_4_102·a_1_0·a_1_2
- a_6_19·a_7_22 + b_2_44·a_1_0·a_1_2·b_3_6 + b_2_43·a_1_02·a_5_13
+ b_2_42·c_4_10·a_1_0·a_1_2·b_3_6 + c_4_10·a_1_0·a_3_7·a_5_11 + c_4_102·a_1_0·a_1_2·a_3_7
- a_7_222 + b_2_45·a_1_0·a_3_7 + b_2_4·c_4_102·a_1_0·a_3_7
+ c_4_102·a_1_02·a_1_2·a_3_7
- a_5_11·a_9_35 + b_2_46·a_1_0·a_1_2 + b_2_46·a_1_02 + b_2_4·a_6_19·a_1_0·a_5_11
+ b_2_43·a_6_19·a_1_0·a_1_2 + b_2_43·a_6_19·a_1_02 + c_8_30·a_1_0·a_5_13 + b_2_4·c_4_10·a_3_7·a_5_11 + b_2_42·c_8_30·a_1_02 + b_2_42·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_0·a_5_11 + b_2_44·c_4_10·a_1_02 + a_2_3·c_8_30·a_1_0·b_3_6 + a_2_3·c_4_10·b_3_6·a_5_11 + c_8_30·a_1_02·a_1_2·b_3_6 + c_4_10·a_1_02·b_3_6·a_5_13 + b_2_4·c_4_10·a_6_19·a_1_0·a_1_2 + b_2_4·c_4_10·a_6_19·a_1_02 + c_8_30·a_1_02·a_1_2·a_3_7 + c_4_10·a_1_02·a_3_7·a_5_13 + a_2_3·c_4_102·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0·b_3_6 + c_4_102·a_1_02·a_1_2·a_3_7 + c_4_103·a_1_0·a_1_2 + c_4_103·a_1_02
- a_5_13·a_9_35 + b_2_46·a_1_0·a_1_2 + b_2_4·a_6_19·a_1_0·a_5_11
+ b_2_42·a_1_02·b_3_6·a_5_13 + b_2_43·a_6_19·a_1_0·a_1_2 + c_8_30·a_1_1·a_5_13 + c_8_30·a_1_0·a_5_11 + b_2_4·c_4_10·a_3_7·a_5_13 + b_2_42·c_8_30·a_1_0·a_1_2 + b_2_42·c_8_30·a_1_02 + b_2_42·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_0·a_5_11 + b_2_44·c_4_10·a_1_0·a_1_2 + b_2_44·c_4_10·a_1_02 + a_2_3·c_8_30·a_1_0·b_3_6 + c_8_30·a_1_02·a_1_2·b_3_6 + b_2_4·c_4_10·a_6_19·a_1_02 + c_8_30·a_1_02·a_1_2·a_3_7 + c_4_10·c_8_30·a_1_1·a_1_2 + c_4_10·c_8_30·a_1_02 + c_4_102·a_1_1·a_5_13 + c_4_102·a_1_0·a_5_11 + a_2_3·c_4_102·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0·b_3_6 + c_4_102·a_1_02·a_1_2·b_3_6 + c_4_103·a_1_02
- a_5_12·a_9_35 + b_2_46·a_1_0·a_1_2 + b_2_46·a_1_02 + b_2_4·a_6_19·a_1_0·a_5_11
+ b_2_43·a_6_19·a_1_0·a_1_2 + b_2_43·a_6_19·a_1_02 + c_8_30·a_1_1·a_5_13 + b_2_4·c_4_10·a_3_7·a_5_11 + b_2_42·c_8_30·a_1_02 + b_2_42·c_4_10·a_1_0·a_5_13 + b_2_44·c_4_10·a_1_02 + a_2_3·c_8_30·a_1_0·b_3_6 + a_2_3·c_4_10·b_3_6·a_5_13 + a_2_3·c_4_10·b_3_6·a_5_11 + c_4_10·a_1_02·b_3_6·a_5_13 + b_2_4·c_4_10·a_6_19·a_1_0·a_1_2 + b_2_4·c_4_10·a_6_19·a_1_02 + c_4_10·a_1_02·a_3_7·a_5_13 + c_4_10·c_8_30·a_1_1·a_1_2 + c_4_10·c_8_30·a_1_02 + c_4_102·a_1_1·a_5_13 + b_2_4·c_4_102·a_1_0·a_3_7 + b_2_42·c_4_102·a_1_0·a_1_2 + a_2_3·c_4_102·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0·b_3_6
- a_5_15·a_9_35 + b_2_43·a_3_7·a_5_11 + b_2_44·a_1_0·a_5_13 + b_2_44·a_1_0·a_5_11
+ b_2_46·a_1_0·a_1_2 + b_2_4·a_6_19·a_1_0·a_5_11 + b_2_43·a_6_19·a_1_0·a_1_2 + c_8_30·a_1_1·a_5_13 + c_8_30·a_1_0·a_5_11 + b_2_4·c_8_30·a_1_2·a_3_7 + b_2_4·c_8_30·a_1_0·a_3_7 + b_2_42·c_8_30·a_1_0·a_1_2 + b_2_42·c_4_10·a_1_0·a_5_13 + b_2_42·c_4_10·a_1_0·a_5_11 + b_2_43·c_4_10·a_1_0·a_3_7 + a_2_3·c_4_10·b_3_6·a_5_13 + a_2_3·c_4_10·b_3_6·a_5_11 + b_2_4·c_4_10·a_6_19·a_1_02 + c_4_102·a_1_0·a_5_11 + b_2_4·c_4_102·a_1_2·a_3_7 + b_2_42·c_4_102·a_1_0·a_1_2 + a_2_3·c_4_102·a_1_2·b_3_6 + a_2_3·c_4_102·a_1_0·b_3_6 + c_4_102·a_1_02·a_1_2·b_3_6 + c_4_102·a_1_02·a_1_2·a_3_7 + c_4_103·a_1_1·a_1_2
- a_6_19·a_9_35 + b_2_42·a_6_19·a_5_11 + b_2_43·a_1_0·a_3_7·a_5_11
+ b_2_44·a_1_02·a_5_13 + b_2_45·a_1_0·a_1_2·a_3_7 + b_2_45·a_1_02·a_3_7 + b_2_4·a_6_19·a_1_02·a_5_13 + a_6_19·c_8_30·a_1_2 + a_6_19·c_8_30·a_1_0 + c_4_10·a_6_19·a_5_13 + b_2_43·c_4_10·a_1_0·a_1_2·b_3_6 + b_2_4·c_4_10·a_1_0·a_3_7·a_5_11 + b_2_43·c_4_10·a_1_0·a_1_2·a_3_7 + b_2_43·c_4_10·a_1_02·a_3_7 + a_2_3·c_8_30·a_1_0·a_1_2·b_3_6 + c_4_102·a_6_19·a_1_2 + c_4_102·a_6_19·a_1_0 + b_2_4·c_4_102·a_1_0·a_1_2·a_3_7
- a_7_22·a_9_35 + b_2_44·a_3_7·a_5_11 + b_2_45·a_1_0·a_5_13 + b_2_45·a_1_0·a_5_11
+ b_2_42·a_6_19·a_1_0·a_5_13 + b_2_43·a_1_02·a_3_7·a_5_13 + c_8_30·a_1_2·a_7_22 + b_2_42·c_8_30·a_1_0·a_3_7 + b_2_42·c_4_10·a_3_7·a_5_13 + b_2_42·c_4_10·a_3_7·a_5_11 + b_2_43·c_8_30·a_1_0·a_1_2 + b_2_43·c_4_10·a_1_0·a_5_13 + b_2_44·c_4_10·a_1_0·a_3_7 + b_2_45·c_4_10·a_1_0·a_1_2 + b_2_45·c_4_10·a_1_02 + a_6_19·c_8_30·a_1_02 + b_2_42·c_4_10·a_6_19·a_1_02 + a_2_3·c_8_30·a_1_0·a_5_13 + a_2_3·c_8_30·a_1_0·a_5_11 + b_2_4·c_4_10·a_1_02·a_3_7·a_5_13 + c_4_10·c_8_30·a_1_2·a_3_5 + c_4_10·c_8_30·a_1_0·a_3_7 + c_4_102·a_3_7·a_5_13 + b_2_4·c_4_10·c_8_30·a_1_0·a_1_2 + b_2_4·c_4_10·c_8_30·a_1_02 + b_2_4·c_4_102·a_1_0·a_5_11 + b_2_42·c_4_102·a_1_2·a_3_7 + b_2_43·c_4_102·a_1_0·a_1_2 + b_2_43·c_4_102·a_1_02 + c_4_102·a_6_19·a_1_02 + a_2_3·c_4_10·c_8_30·a_1_02 + a_2_3·c_4_102·a_1_0·a_5_13 + a_2_3·c_4_102·a_1_0·a_5_11 + c_4_103·a_1_2·a_3_7 + c_4_103·a_1_2·a_3_5 + c_4_103·a_1_0·a_3_7 + b_2_4·c_4_103·a_1_02 + a_2_3·c_4_103·a_1_0·a_1_2
- a_9_352 + b_2_48·a_1_0·a_1_2 + b_2_48·a_1_02 + b_2_44·a_1_02·b_3_6·a_5_13
+ b_2_45·a_6_19·a_1_02 + b_2_44·c_8_30·a_1_02 + b_2_46·c_4_10·a_1_0·a_1_2 + b_2_46·c_4_10·a_1_02 + c_8_302·a_1_0·a_1_2 + b_2_43·c_4_102·a_1_0·a_3_7 + b_2_4·c_4_102·a_6_19·a_1_0·a_1_2 + c_4_102·c_8_30·a_1_0·a_1_2 + b_2_42·c_4_103·a_1_02 + c_4_103·a_1_02·a_1_2·b_3_6 + c_4_103·a_1_02·a_1_2·a_3_7 + c_4_104·a_1_0·a_1_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_10, a Duflot regular element of degree 4
- c_8_30, a Duflot regular element of degree 8
- b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- c_4_10 → c_1_04, an element of degree 4
- a_5_11 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_5_13 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- a_6_19 → 0, an element of degree 6
- a_7_22 → 0, an element of degree 7
- c_8_30 → c_1_18 + c_1_08, an element of degree 8
- a_9_35 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_22, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- b_3_6 → c_1_23, an element of degree 3
- c_4_10 → c_1_24 + c_1_04, an element of degree 4
- a_5_11 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_5_13 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- a_6_19 → 0, an element of degree 6
- a_7_22 → 0, an element of degree 7
- c_8_30 → c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8
- a_9_35 → 0, an element of degree 9
|