Cohomology of group number 740 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 1.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3 and 4, respectively.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    ( − 1) · (t5  −  3·t4  +  3·t3  −  2·t2  +  t  −  1)

    (t  −  1)4 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 14 minimal generators of maximal degree 8:

  1. b_1_0, an element of degree 1
  2. b_1_1, an element of degree 1
  3. b_1_2, an element of degree 1
  4. a_2_4, a nilpotent element of degree 2
  5. b_2_3, an element of degree 2
  6. b_2_5, an element of degree 2
  7. b_2_6, an element of degree 2
  8. b_3_11, an element of degree 3
  9. b_5_23, an element of degree 5
  10. b_5_24, an element of degree 5
  11. b_5_25, an element of degree 5
  12. b_6_35, an element of degree 6
  13. b_6_36, an element of degree 6
  14. c_8_66, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 53 minimal relations of maximal degree 12:

  1. b_1_0·b_1_1
  2. b_1_0·b_1_2
  3. b_1_1·b_1_2
  4. a_2_4·b_1_2
  5. b_2_3·b_1_0 + a_2_4·b_1_0
  6. b_2_3·b_1_1
  7. b_2_6·b_1_0 + b_2_5·b_1_1
  8. a_2_42
  9. a_2_4·b_2_3
  10. b_2_5·b_1_22 + b_2_32
  11. b_1_0·b_3_11 + a_2_4·b_2_5
  12. b_1_1·b_3_11 + a_2_4·b_2_6
  13. b_2_5·b_2_6·b_1_1 + b_2_52·b_1_1
  14. a_2_4·b_3_11
  15. b_1_2·b_5_23 + b_1_23·b_3_11 + b_2_3·b_2_6·b_1_22 + b_2_3·b_2_5·b_2_6
       + b_2_3·b_2_52 + b_2_32·b_1_22 + b_2_33 + a_2_4·b_2_5·b_2_6 + a_2_4·b_2_52
  16. b_1_1·b_5_23
  17. b_3_112 + b_1_2·b_5_24 + b_2_6·b_1_2·b_3_11 + b_2_5·b_2_62 + b_2_52·b_2_6
       + b_2_3·b_1_2·b_3_11 + b_2_3·b_1_24 + b_2_3·b_2_6·b_1_22 + b_2_3·b_2_62
       + b_2_32·b_2_6 + b_2_33 + a_2_4·b_2_5·b_2_6
  18. b_1_0·b_5_24 + b_2_5·b_1_04 + b_2_52·b_1_02 + a_2_4·b_1_04 + a_2_4·b_2_5·b_1_02
       + a_2_4·b_2_5·b_2_6 + a_2_4·b_2_52
  19. b_1_1·b_5_24 + a_2_4·b_2_6·b_1_12
  20. b_1_2·b_5_25 + b_1_23·b_3_11 + b_2_3·b_1_2·b_3_11 + b_2_3·b_2_6·b_1_22
       + b_2_3·b_2_62 + b_2_3·b_2_52 + b_2_32·b_2_6 + a_2_4·b_2_5·b_2_6 + a_2_4·b_2_52
  21. b_1_0·b_5_25 + b_1_0·b_5_23 + b_2_5·b_1_04 + b_2_52·b_1_02 + a_2_4·b_1_04
  22. b_2_52·b_2_6·b_1_2 + b_2_53·b_1_2 + b_2_3·b_5_23 + b_2_3·b_1_22·b_3_11
       + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2 + b_2_33·b_1_2 + a_2_4·b_5_23
  23. a_2_4·b_5_24 + a_2_4·b_2_5·b_1_03 + a_2_4·b_2_52·b_1_0
  24. b_2_5·b_2_62·b_1_2 + b_2_52·b_2_6·b_1_2 + b_2_3·b_5_25 + b_2_3·b_5_23
       + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_32·b_3_11 + b_2_32·b_2_5·b_1_2 + b_2_33·b_1_2
       + a_2_4·b_2_5·b_1_03 + a_2_4·b_2_52·b_1_0
  25. b_2_6·b_5_23 + b_2_6·b_1_22·b_3_11 + b_2_5·b_5_25 + b_2_5·b_5_23 + b_2_52·b_1_03
       + b_2_52·b_2_6·b_1_2 + b_2_53·b_1_1 + b_2_53·b_1_0 + b_2_3·b_2_62·b_1_2
       + b_2_3·b_2_5·b_3_11 + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_3·b_2_52·b_1_2
       + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2 + a_2_4·b_2_5·b_1_03
  26. b_1_22·b_5_24 + b_6_35·b_1_2 + b_2_6·b_1_22·b_3_11 + b_2_3·b_1_25
       + b_2_3·b_2_6·b_3_11 + b_2_3·b_2_6·b_1_23 + b_2_3·b_2_62·b_1_2 + b_2_3·b_2_5·b_3_11
  27. b_6_35·b_1_0 + b_2_5·b_1_05 + b_2_52·b_2_6·b_1_2 + b_2_53·b_1_2 + b_2_3·b_5_23
       + b_2_3·b_1_22·b_3_11 + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2 + b_2_33·b_1_2
       + a_2_4·b_1_05
  28. b_6_35·b_1_1 + b_2_52·b_2_6·b_1_2 + b_2_53·b_1_2 + b_2_3·b_5_23 + b_2_3·b_1_22·b_3_11
       + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2 + b_2_33·b_1_2 + a_2_4·b_5_25
       + a_2_4·b_2_5·b_1_03 + a_2_4·b_2_52·b_1_0
  29. b_6_36·b_1_2 + b_2_6·b_1_22·b_3_11 + b_2_53·b_1_2 + b_2_3·b_5_24 + b_2_3·b_2_6·b_3_11
       + b_2_3·b_2_6·b_1_23 + b_2_3·b_2_5·b_3_11 + b_2_3·b_2_5·b_2_6·b_1_2
       + b_2_3·b_2_52·b_1_2 + b_2_32·b_1_23 + a_2_4·b_2_5·b_1_03 + a_2_4·b_2_52·b_1_0
  30. b_6_36·b_1_0 + b_2_5·b_1_05 + b_2_53·b_1_0 + a_2_4·b_1_05
  31. b_6_36·b_1_1 + b_2_52·b_2_6·b_1_2 + b_2_53·b_1_2 + b_2_53·b_1_1 + b_2_3·b_5_23
       + b_2_3·b_1_22·b_3_11 + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2 + b_2_33·b_1_2
       + a_2_4·b_5_25 + a_2_4·b_2_6·b_1_13 + a_2_4·b_2_62·b_1_1 + a_2_4·b_2_5·b_1_03
       + a_2_4·b_2_52·b_1_0
  32. b_2_5·b_2_6·b_1_2·b_3_11 + b_2_52·b_1_2·b_3_11 + b_2_3·b_1_2·b_5_24 + b_2_3·b_6_35
       + b_2_3·b_2_6·b_1_2·b_3_11 + b_2_32·b_1_24 + b_2_32·b_2_6·b_1_22
       + b_2_32·b_2_62 + a_2_4·b_2_5·b_1_04
  33. b_3_11·b_5_23 + b_6_35·b_1_22 + b_2_5·b_1_2·b_5_24 + b_2_5·b_6_35
       + b_2_5·b_2_6·b_1_2·b_3_11 + b_2_52·b_1_04 + b_2_3·b_1_23·b_3_11
       + b_2_3·b_2_5·b_2_62 + b_2_32·b_1_2·b_3_11 + b_2_32·b_2_6·b_1_22
       + b_2_32·b_2_62 + b_2_32·b_2_5·b_2_6 + b_2_33·b_2_6 + a_2_4·b_2_5·b_1_04
       + a_2_4·b_2_52·b_2_6
  34. b_3_11·b_5_25 + b_3_11·b_5_23 + b_2_6·b_1_2·b_5_24 + b_2_6·b_6_35 + b_2_62·b_1_2·b_3_11
       + b_2_5·b_2_6·b_1_2·b_3_11 + b_2_3·b_1_2·b_5_24 + b_2_3·b_2_6·b_1_2·b_3_11
       + b_2_3·b_2_6·b_1_24 + b_2_3·b_2_62·b_1_22 + b_2_3·b_2_63
       + b_2_3·b_2_5·b_1_2·b_3_11 + b_2_3·b_2_5·b_2_62 + b_2_3·b_2_52·b_2_6
       + b_2_32·b_1_24 + b_2_32·b_2_6·b_1_22 + b_2_32·b_2_62 + b_2_33·b_2_6 + b_2_34
       + a_2_4·b_2_52·b_1_02 + a_2_4·b_2_53
  35. a_2_4·b_6_35 + a_2_4·b_2_5·b_1_04
  36. b_2_5·b_1_2·b_5_24 + b_2_5·b_2_6·b_1_2·b_3_11 + b_2_52·b_1_2·b_3_11 + b_2_3·b_6_36
       + b_2_3·b_2_6·b_1_2·b_3_11 + b_2_3·b_2_53 + b_2_32·b_2_6·b_1_22
       + b_2_32·b_2_5·b_2_6 + b_2_32·b_2_52 + b_2_33·b_1_22 + a_2_4·b_2_5·b_1_04
  37. a_2_4·b_6_36 + a_2_4·b_2_5·b_1_04 + a_2_4·b_2_53
  38. b_1_2·b_3_11·b_5_24 + b_6_35·b_3_11 + b_2_6·b_6_35·b_1_2 + b_2_5·b_2_6·b_5_25
       + b_2_54·b_1_2 + b_2_3·b_1_24·b_3_11 + b_2_3·b_2_6·b_5_24 + b_2_3·b_2_62·b_3_11
       + b_2_3·b_2_5·b_5_25 + b_2_3·b_2_5·b_5_24 + b_2_3·b_2_5·b_2_6·b_3_11
       + b_2_32·b_2_6·b_1_23 + b_2_32·b_2_5·b_2_6·b_1_2 + b_2_32·b_2_52·b_1_2
       + b_2_33·b_3_11 + b_2_33·b_2_6·b_1_2 + b_2_34·b_1_2 + a_2_4·b_2_5·b_5_23
       + a_2_4·b_2_52·b_1_03
  39. b_5_23·b_5_25 + b_5_232 + b_2_5·b_1_03·b_5_23 + b_2_52·b_1_0·b_5_23
       + b_2_52·b_2_63 + b_2_54·b_2_6 + b_2_3·b_6_35·b_1_22 + b_2_3·b_2_62·b_1_2·b_3_11
       + b_2_3·b_2_5·b_6_35 + b_2_3·b_2_52·b_2_62 + b_2_3·b_2_53·b_2_6
       + b_2_32·b_1_2·b_5_24 + b_2_32·b_6_36 + b_2_32·b_6_35 + b_2_32·b_2_6·b_1_2·b_3_11
       + b_2_32·b_2_63 + b_2_32·b_2_5·b_2_62 + b_2_33·b_1_24 + b_2_33·b_2_5·b_2_6
       + b_2_34·b_2_6 + b_2_34·b_2_5 + a_2_4·b_1_03·b_5_23 + a_2_4·b_2_52·b_1_04
  40. b_5_23·b_5_25 + b_5_23·b_5_24 + b_5_232 + b_6_35·b_1_2·b_3_11 + b_2_6·b_6_35·b_1_22
       + b_2_5·b_2_6·b_6_36 + b_2_5·b_2_6·b_6_35 + b_2_52·b_6_36 + b_2_52·b_6_35
       + b_2_52·b_2_63 + b_2_55 + b_2_3·b_1_25·b_3_11 + b_2_3·b_6_35·b_1_22
       + b_2_3·b_2_6·b_1_2·b_5_24 + b_2_3·b_2_6·b_6_36 + b_2_3·b_2_6·b_6_35
       + b_2_3·b_2_5·b_6_36 + b_2_3·b_2_52·b_2_62 + b_2_3·b_2_53·b_2_6
       + b_2_32·b_1_2·b_5_24 + b_2_32·b_2_5·b_1_2·b_3_11 + b_2_32·b_2_5·b_2_62
       + b_2_33·b_2_6·b_1_22 + b_2_33·b_2_5·b_2_6 + b_2_33·b_2_52 + b_2_34·b_1_22
       + b_2_34·b_2_5 + a_2_4·b_2_5·b_1_0·b_5_23 + a_2_4·b_2_52·b_1_04
       + a_2_4·b_2_53·b_2_6 + a_2_4·b_2_54
  41. b_5_24·b_5_25 + b_6_35·b_1_2·b_3_11 + b_2_6·b_6_35·b_1_22 + b_2_62·b_1_2·b_5_24
       + b_2_62·b_6_36 + b_2_62·b_6_35 + b_2_5·b_1_03·b_5_23 + b_2_52·b_1_0·b_5_23
       + b_2_52·b_1_06 + b_2_52·b_6_36 + b_2_52·b_6_35 + b_2_53·b_2_62
       + b_2_54·b_1_02 + b_2_55 + b_2_3·b_3_11·b_5_24 + b_2_3·b_1_25·b_3_11
       + b_2_3·b_2_6·b_1_2·b_5_24 + b_2_3·b_2_6·b_6_36 + b_2_3·b_2_6·b_6_35
       + b_2_3·b_2_62·b_1_2·b_3_11 + b_2_3·b_2_62·b_1_24 + b_2_3·b_2_64
       + b_2_3·b_2_5·b_6_36 + b_2_3·b_2_5·b_6_35 + b_2_3·b_2_53·b_2_6
       + b_2_32·b_2_6·b_1_2·b_3_11 + b_2_32·b_2_62·b_1_22 + b_2_32·b_2_63
       + b_2_32·b_2_5·b_1_2·b_3_11 + b_2_32·b_2_53 + b_2_33·b_2_62
       + b_2_33·b_2_5·b_2_6 + a_2_4·b_1_03·b_5_23 + a_2_4·b_2_6·b_1_1·b_5_25
       + a_2_4·b_2_63·b_1_12 + a_2_4·b_2_64 + a_2_4·b_2_5·b_1_0·b_5_23
       + a_2_4·b_2_52·b_1_04 + a_2_4·b_2_53·b_2_6
  42. b_5_242 + b_1_27·b_3_11 + b_6_35·b_1_2·b_3_11 + b_6_35·b_1_24 + b_2_52·b_1_06
       + b_2_52·b_2_63 + b_2_54·b_1_02 + b_2_54·b_2_6 + b_2_3·b_2_6·b_1_23·b_3_11
       + b_2_3·b_2_6·b_1_26 + b_2_3·b_2_6·b_6_36 + b_2_3·b_2_6·b_6_35
       + b_2_3·b_2_62·b_1_24 + b_2_3·b_2_5·b_6_36 + b_2_3·b_2_5·b_6_35
       + b_2_3·b_2_5·b_2_63 + b_2_3·b_2_52·b_1_2·b_3_11 + b_2_3·b_2_54
       + b_2_32·b_1_2·b_5_24 + b_2_32·b_1_23·b_3_11 + b_2_32·b_2_63
       + b_2_32·b_2_5·b_1_2·b_3_11 + b_2_32·b_2_5·b_2_62 + b_2_32·b_2_53
       + b_2_33·b_1_24 + b_2_33·b_2_6·b_1_22 + b_2_33·b_2_5·b_2_6 + b_2_33·b_2_52
       + b_2_34·b_2_5 + b_2_35 + c_8_66·b_1_22
  43. b_5_232 + b_6_35·b_1_24 + b_2_52·b_1_0·b_5_23 + b_2_52·b_1_06 + b_2_53·b_2_62
       + b_2_55 + b_2_3·b_1_25·b_3_11 + b_2_3·b_2_6·b_1_23·b_3_11 + b_2_32·b_2_6·b_1_24
       + b_2_33·b_1_2·b_3_11 + b_2_33·b_1_24 + b_2_34·b_1_22 + b_2_34·b_2_6
       + b_2_34·b_2_5 + a_2_4·b_1_08 + a_2_4·b_2_52·b_1_04 + c_8_66·b_1_02
  44. b_5_252 + b_5_232 + b_2_6·b_1_13·b_5_25 + b_2_62·b_1_1·b_5_25 + b_2_5·b_2_64
       + b_2_52·b_1_06 + b_2_53·b_2_62 + b_2_54·b_1_02 + b_2_32·b_1_2·b_5_24
       + b_2_32·b_2_6·b_1_2·b_3_11 + b_2_32·b_2_52·b_2_6 + b_2_33·b_1_2·b_3_11
       + b_2_33·b_1_24 + b_2_33·b_2_6·b_1_22 + b_2_33·b_2_62 + b_2_34·b_1_22
       + b_2_34·b_2_6 + b_2_34·b_2_5 + b_2_35 + a_2_4·b_1_13·b_5_25
       + a_2_4·b_2_62·b_1_14 + c_8_66·b_1_12
  45. b_6_36·b_5_23 + b_2_6·b_6_35·b_1_23 + b_2_5·b_1_04·b_5_23 + b_2_52·b_2_6·b_5_24
       + b_2_52·b_2_62·b_3_11 + b_2_53·b_5_24 + b_2_53·b_5_23 + b_2_54·b_3_11
       + b_2_54·b_1_03 + b_2_55·b_1_1 + b_2_55·b_1_0 + b_2_3·b_6_35·b_3_11
       + b_2_3·b_2_5·b_2_6·b_5_25 + b_2_3·b_2_5·b_2_62·b_3_11 + b_2_3·b_2_52·b_5_25
       + b_2_3·b_2_52·b_2_6·b_3_11 + b_2_32·b_2_6·b_5_25 + b_2_32·b_2_6·b_1_22·b_3_11
       + b_2_32·b_2_62·b_3_11 + b_2_32·b_2_63·b_1_2 + b_2_32·b_2_5·b_5_25
       + b_2_32·b_2_5·b_5_23 + b_2_33·b_5_25 + b_2_33·b_1_22·b_3_11 + b_2_33·b_2_5·b_3_11
       + b_2_34·b_2_6·b_1_2 + a_2_4·b_1_04·b_5_23 + a_2_4·b_2_52·b_5_23
  46. b_6_36·b_5_25 + b_6_35·b_5_25 + b_6_35·b_5_23 + b_2_6·b_6_35·b_1_23
       + b_2_5·b_1_04·b_5_23 + b_2_5·b_2_62·b_5_24 + b_2_52·b_2_62·b_3_11 + b_2_53·b_5_25
       + b_2_53·b_5_24 + b_2_54·b_3_11 + b_2_54·b_1_03 + b_2_55·b_1_1 + b_2_55·b_1_0
       + b_2_3·b_6_36·b_3_11 + b_2_3·b_2_62·b_5_25 + b_2_3·b_2_62·b_5_24
       + b_2_3·b_2_62·b_1_22·b_3_11 + b_2_3·b_2_5·b_2_6·b_5_25
       + b_2_3·b_2_5·b_2_62·b_3_11 + b_2_3·b_2_52·b_5_23 + b_2_3·b_2_52·b_2_6·b_3_11
       + b_2_3·b_2_53·b_3_11 + b_2_3·b_2_54·b_1_2 + b_2_32·b_6_35·b_1_2
       + b_2_32·b_2_6·b_5_25 + b_2_32·b_2_6·b_5_24 + b_2_32·b_2_62·b_1_23
       + b_2_32·b_2_5·b_5_24 + b_2_32·b_2_5·b_5_23 + b_2_32·b_2_52·b_3_11
       + b_2_32·b_2_53·b_1_2 + b_2_33·b_2_6·b_3_11 + b_2_33·b_2_62·b_1_2
       + b_2_33·b_2_5·b_3_11 + b_2_35·b_1_2 + a_2_4·b_1_04·b_5_23
       + a_2_4·b_2_6·b_1_12·b_5_25 + a_2_4·b_2_62·b_5_25 + a_2_4·b_2_5·b_1_02·b_5_23
       + a_2_4·b_2_53·b_1_03 + a_2_4·b_2_54·b_1_0
  47. b_1_28·b_3_11 + b_6_35·b_5_24 + b_6_35·b_1_22·b_3_11 + b_6_35·b_1_25
       + b_2_6·b_6_36·b_3_11 + b_2_6·b_6_35·b_3_11 + b_2_5·b_6_36·b_3_11 + b_2_52·b_1_07
       + b_2_52·b_2_6·b_5_25 + b_2_53·b_1_05 + b_2_53·b_2_6·b_3_11 + b_2_54·b_3_11
       + b_2_55·b_1_2 + b_2_3·b_6_35·b_1_23 + b_2_3·b_2_6·b_1_24·b_3_11
       + b_2_3·b_2_6·b_1_27 + b_2_3·b_2_62·b_5_24 + b_2_3·b_2_62·b_1_25
       + b_2_3·b_2_63·b_3_11 + b_2_3·b_2_5·b_2_6·b_5_25 + b_2_3·b_2_5·b_2_6·b_5_24
       + b_2_3·b_2_52·b_5_25 + b_2_3·b_2_52·b_5_24 + b_2_3·b_2_53·b_3_11
       + b_2_32·b_1_24·b_3_11 + b_2_32·b_1_27 + b_2_32·b_6_35·b_1_2
       + b_2_32·b_2_6·b_1_22·b_3_11 + b_2_32·b_2_62·b_3_11 + b_2_32·b_2_62·b_1_23
       + b_2_32·b_2_5·b_5_25 + b_2_32·b_2_5·b_5_24 + b_2_32·b_2_5·b_5_23
       + b_2_32·b_2_5·b_2_6·b_3_11 + b_2_32·b_2_53·b_1_2 + b_2_33·b_5_24 + b_2_34·b_3_11
       + b_2_34·b_1_23 + b_2_34·b_2_6·b_1_2 + b_2_34·b_2_5·b_1_2
       + a_2_4·b_2_5·b_1_02·b_5_23 + c_8_66·b_1_23
  48. b_6_36·b_5_24 + b_2_6·b_6_36·b_3_11 + b_2_6·b_6_35·b_3_11 + b_2_5·b_6_36·b_3_11
       + b_2_52·b_1_07 + b_2_53·b_5_24 + b_2_53·b_1_05 + b_2_53·b_2_6·b_3_11
       + b_2_54·b_3_11 + b_2_3·b_1_26·b_3_11 + b_2_3·b_6_35·b_3_11 + b_2_3·b_6_35·b_1_23
       + b_2_3·b_2_6·b_1_24·b_3_11 + b_2_3·b_2_6·b_6_35·b_1_2
       + b_2_3·b_2_62·b_1_22·b_3_11 + b_2_3·b_2_63·b_3_11 + b_2_3·b_2_5·b_2_6·b_5_25
       + b_2_3·b_2_5·b_2_6·b_5_24 + b_2_3·b_2_52·b_5_24 + b_2_3·b_2_52·b_2_6·b_3_11
       + b_2_3·b_2_53·b_3_11 + b_2_3·b_2_54·b_1_2 + b_2_32·b_6_35·b_1_2
       + b_2_32·b_2_6·b_5_25 + b_2_32·b_2_63·b_1_2 + b_2_32·b_2_5·b_5_25
       + b_2_32·b_2_5·b_5_24 + b_2_32·b_2_5·b_2_6·b_3_11 + b_2_33·b_5_24
       + b_2_33·b_1_22·b_3_11 + b_2_33·b_1_25 + b_2_33·b_2_6·b_3_11
       + b_2_33·b_2_6·b_1_23 + b_2_33·b_2_62·b_1_2 + b_2_33·b_2_5·b_3_11
       + b_2_33·b_2_52·b_1_2 + b_2_34·b_1_23 + b_2_34·b_2_6·b_1_2 + b_2_34·b_2_5·b_1_2
       + b_2_35·b_1_2 + a_2_4·b_2_53·b_1_03 + a_2_4·b_2_54·b_1_0 + b_2_3·c_8_66·b_1_2
  49. b_6_35·b_5_23 + b_6_35·b_1_22·b_3_11 + b_2_5·b_1_04·b_5_23 + b_2_52·b_2_62·b_3_11
       + b_2_54·b_3_11 + b_2_3·b_2_6·b_6_35·b_1_2 + b_2_3·b_2_5·b_2_6·b_5_25
       + b_2_3·b_2_5·b_2_6·b_5_24 + b_2_3·b_2_5·b_2_62·b_3_11 + b_2_3·b_2_52·b_5_25
       + b_2_3·b_2_52·b_5_24 + b_2_3·b_2_52·b_5_23 + b_2_3·b_2_52·b_2_6·b_3_11
       + b_2_32·b_6_35·b_1_2 + b_2_32·b_2_5·b_5_25 + b_2_32·b_2_5·b_5_23 + b_2_33·b_5_25
       + b_2_33·b_5_24 + b_2_33·b_1_22·b_3_11 + b_2_33·b_2_5·b_3_11
       + b_2_33·b_2_5·b_2_6·b_1_2 + b_2_34·b_3_11 + b_2_34·b_1_23 + b_2_34·b_2_6·b_1_2
       + a_2_4·b_1_04·b_5_23 + a_2_4·b_2_52·b_5_23 + a_2_4·b_2_52·b_1_05
       + a_2_4·c_8_66·b_1_0
  50. b_6_35·b_5_25 + b_6_35·b_5_23 + b_2_5·b_2_63·b_3_11 + b_2_52·b_1_07
       + b_2_53·b_1_05 + b_2_53·b_2_6·b_3_11 + b_2_3·b_6_35·b_3_11 + b_2_3·b_2_62·b_5_25
       + b_2_3·b_2_62·b_5_24 + b_2_3·b_2_62·b_1_22·b_3_11 + b_2_3·b_2_63·b_3_11
       + b_2_3·b_2_5·b_2_6·b_5_25 + b_2_3·b_2_5·b_2_6·b_5_24 + b_2_3·b_2_52·b_5_25
       + b_2_3·b_2_52·b_5_23 + b_2_3·b_2_52·b_2_6·b_3_11 + b_2_32·b_6_35·b_1_2
       + b_2_32·b_2_6·b_5_24 + b_2_32·b_2_62·b_1_23 + b_2_32·b_2_5·b_5_25
       + b_2_32·b_2_5·b_5_23 + b_2_32·b_2_53·b_1_2 + b_2_33·b_5_25 + b_2_33·b_5_24
       + b_2_33·b_5_23 + b_2_33·b_2_6·b_1_23 + b_2_33·b_2_62·b_1_2
       + b_2_33·b_2_5·b_3_11 + b_2_33·b_2_5·b_2_6·b_1_2 + b_2_34·b_3_11 + b_2_34·b_1_23
       + b_2_35·b_1_2 + a_2_4·b_2_6·b_1_12·b_5_25 + a_2_4·b_2_62·b_5_25
       + a_2_4·b_2_5·b_1_02·b_5_23 + a_2_4·b_2_52·b_5_23 + a_2_4·b_2_52·b_1_05
       + a_2_4·b_2_53·b_1_03 + a_2_4·b_2_54·b_1_0 + a_2_4·c_8_66·b_1_1
  51. b_6_35·b_1_2·b_5_24 + b_6_352 + b_2_6·b_6_35·b_1_2·b_3_11 + b_2_52·b_1_08
       + b_2_52·b_2_64 + b_2_53·b_2_63 + b_2_54·b_2_62 + b_2_55·b_2_6
       + b_2_3·b_6_35·b_1_24 + b_2_3·b_2_6·b_3_11·b_5_24 + b_2_3·b_2_6·b_6_35·b_1_22
       + b_2_3·b_2_62·b_6_36 + b_2_3·b_2_63·b_1_2·b_3_11 + b_2_3·b_2_5·b_3_11·b_5_24
       + b_2_3·b_2_5·b_2_6·b_6_35 + b_2_3·b_2_52·b_6_36 + b_2_3·b_2_52·b_6_35
       + b_2_3·b_2_53·b_2_62 + b_2_3·b_2_55 + b_2_32·b_2_6·b_1_2·b_5_24
       + b_2_32·b_2_6·b_1_23·b_3_11 + b_2_32·b_2_6·b_6_35 + b_2_32·b_2_62·b_1_2·b_3_11
       + b_2_32·b_2_63·b_1_22 + b_2_32·b_2_5·b_6_36 + b_2_32·b_2_52·b_1_2·b_3_11
       + b_2_33·b_1_2·b_5_24 + b_2_33·b_6_35 + b_2_33·b_2_6·b_1_2·b_3_11
       + b_2_33·b_2_6·b_1_24 + b_2_33·b_2_62·b_1_22 + b_2_33·b_2_63
       + b_2_34·b_1_2·b_3_11 + b_2_34·b_1_24 + b_2_34·b_2_6·b_1_22
       + b_2_34·b_2_5·b_2_6 + b_2_35·b_2_6
  52. b_6_35·b_6_36 + b_2_6·b_6_35·b_1_2·b_3_11 + b_2_5·b_2_6·b_3_11·b_5_24
       + b_2_52·b_3_11·b_5_24 + b_2_52·b_1_08 + b_2_52·b_2_64 + b_2_53·b_6_35
       + b_2_53·b_2_63 + b_2_54·b_2_62 + b_2_55·b_2_6 + b_2_3·b_1_27·b_3_11
       + b_2_3·b_6_35·b_1_2·b_3_11 + b_2_3·b_6_35·b_1_24 + b_2_3·b_2_6·b_6_35·b_1_22
       + b_2_3·b_2_62·b_1_2·b_5_24 + b_2_3·b_2_63·b_1_2·b_3_11 + b_2_3·b_2_5·b_3_11·b_5_24
       + b_2_3·b_2_52·b_6_36 + b_2_3·b_2_52·b_2_63 + b_2_3·b_2_54·b_2_6 + b_2_3·b_2_55
       + b_2_32·b_2_6·b_1_23·b_3_11 + b_2_32·b_2_6·b_1_26 + b_2_32·b_2_6·b_6_36
       + b_2_32·b_2_62·b_1_2·b_3_11 + b_2_32·b_2_63·b_1_22 + b_2_32·b_2_64
       + b_2_32·b_2_5·b_6_35 + b_2_32·b_2_52·b_2_62 + b_2_32·b_2_54
       + b_2_33·b_1_23·b_3_11 + b_2_33·b_1_26 + b_2_33·b_6_35 + b_2_33·b_2_62·b_1_22
       + b_2_33·b_2_5·b_2_62 + b_2_33·b_2_53 + b_2_34·b_1_2·b_3_11 + b_2_34·b_2_52
       + b_2_35·b_2_6 + b_2_35·b_2_5 + b_2_36 + a_2_4·b_2_5·b_1_03·b_5_23
       + a_2_4·b_2_53·b_1_04 + a_2_4·b_2_54·b_1_02 + a_2_4·b_2_54·b_2_6
       + a_2_4·b_2_55 + b_2_3·c_8_66·b_1_22
  53. b_6_362 + b_6_35·b_1_2·b_5_24 + b_6_352 + b_2_6·b_6_35·b_1_2·b_3_11
       + b_2_62·b_6_35·b_1_22 + b_2_53·b_2_63 + b_2_55·b_2_6 + b_2_56
       + b_2_3·b_6_35·b_1_24 + b_2_3·b_2_6·b_3_11·b_5_24 + b_2_3·b_2_6·b_6_35·b_1_22
       + b_2_3·b_2_62·b_1_23·b_3_11 + b_2_3·b_2_63·b_1_2·b_3_11
       + b_2_3·b_2_5·b_3_11·b_5_24 + b_2_3·b_2_5·b_2_6·b_6_36 + b_2_3·b_2_5·b_2_6·b_6_35
       + b_2_3·b_2_5·b_2_64 + b_2_3·b_2_52·b_6_36 + b_2_3·b_2_52·b_6_35
       + b_2_3·b_2_53·b_2_62 + b_2_3·b_2_54·b_2_6 + b_2_3·b_2_55 + b_2_32·b_3_11·b_5_24
       + b_2_32·b_1_25·b_3_11 + b_2_32·b_6_35·b_1_22 + b_2_32·b_2_6·b_1_2·b_5_24
       + b_2_32·b_2_6·b_1_23·b_3_11 + b_2_32·b_2_62·b_1_2·b_3_11
       + b_2_32·b_2_62·b_1_24 + b_2_32·b_2_63·b_1_22 + b_2_32·b_2_64
       + b_2_32·b_2_5·b_6_36 + b_2_32·b_2_5·b_2_63 + b_2_32·b_2_54
       + b_2_33·b_1_2·b_5_24 + b_2_33·b_1_23·b_3_11 + b_2_33·b_6_36 + b_2_33·b_6_35
       + b_2_33·b_2_6·b_1_2·b_3_11 + b_2_33·b_2_62·b_1_22 + b_2_33·b_2_52·b_2_6
       + b_2_33·b_2_53 + b_2_34·b_2_62 + b_2_34·b_2_52 + b_2_35·b_2_6 + b_2_35·b_2_5
       + b_2_32·c_8_66


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_66, a Duflot regular element of degree 8
    2. b_1_24 + b_1_14 + b_1_04 + b_2_62 + b_2_5·b_2_6 + b_2_52 + b_2_3·b_2_6 + b_2_32, an element of degree 4
    3. b_2_62·b_1_22 + b_2_62·b_1_12 + b_2_5·b_2_62 + b_2_52·b_1_02 + b_2_52·b_2_6
         + b_2_3·b_2_6·b_1_22 + b_2_3·b_2_62 + b_2_32·b_1_22 + b_2_32·b_2_5, an element of degree 6
    4. b_2_53·b_1_1 + b_2_3·b_5_25 + b_2_3·b_5_23 + b_2_3·b_2_62·b_1_2
         + b_2_3·b_2_5·b_2_6·b_1_2 + b_2_32·b_3_11 + b_2_32·b_2_6·b_1_2 + b_2_32·b_2_5·b_1_2
         + b_2_33·b_1_2, an element of degree 7
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 14, 21].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
  • We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 3 elements of degree 2.


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. b_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_40, an element of degree 2
  5. b_2_30, an element of degree 2
  6. b_2_50, an element of degree 2
  7. b_2_60, an element of degree 2
  8. b_3_110, an element of degree 3
  9. b_5_230, an element of degree 5
  10. b_5_240, an element of degree 5
  11. b_5_250, an element of degree 5
  12. b_6_350, an element of degree 6
  13. b_6_360, an element of degree 6
  14. c_8_66c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_0c_1_1, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_40, an element of degree 2
  5. b_2_30, an element of degree 2
  6. b_2_5c_1_22 + c_1_1·c_1_2, an element of degree 2
  7. b_2_60, an element of degree 2
  8. b_3_110, an element of degree 3
  9. b_5_23c_1_25 + c_1_1·c_1_24 + c_1_12·c_1_23 + c_1_13·c_1_22 + c_1_02·c_1_13
       + c_1_04·c_1_1, an element of degree 5
  10. b_5_24c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  11. b_5_25c_1_25 + c_1_12·c_1_23 + c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_02·c_1_13
       + c_1_04·c_1_1, an element of degree 5
  12. b_6_35c_1_14·c_1_22 + c_1_15·c_1_2, an element of degree 6
  13. b_6_36c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23 + c_1_14·c_1_22
       + c_1_15·c_1_2, an element of degree 6
  14. c_8_66c_1_14·c_1_24 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_00, an element of degree 1
  2. b_1_1c_1_1, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_40, an element of degree 2
  5. b_2_30, an element of degree 2
  6. b_2_50, an element of degree 2
  7. b_2_6c_1_22 + c_1_1·c_1_2, an element of degree 2
  8. b_3_110, an element of degree 3
  9. b_5_230, an element of degree 5
  10. b_5_240, an element of degree 5
  11. b_5_25c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  12. b_6_350, an element of degree 6
  13. b_6_360, an element of degree 6
  14. c_8_66c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24
       + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4

  1. b_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_1, an element of degree 1
  4. a_2_40, an element of degree 2
  5. b_2_3c_1_1·c_1_3, an element of degree 2
  6. b_2_5c_1_32, an element of degree 2
  7. b_2_6c_1_22 + c_1_1·c_1_2, an element of degree 2
  8. b_3_11c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_12·c_1_3 + c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
  9. b_5_23c_1_35 + c_1_22·c_1_33 + c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33
       + c_1_12·c_1_2·c_1_32 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_14·c_1_3
       + c_1_0·c_1_14 + c_1_02·c_1_13, an element of degree 5
  10. b_5_24c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_23·c_1_3
       + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3
       + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_3 + c_1_0·c_1_13·c_1_2
       + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_3 + c_1_02·c_1_12·c_1_2
       + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  11. b_5_25c_1_35 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_3
       + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_14·c_1_3 + c_1_0·c_1_13·c_1_3
       + c_1_0·c_1_14 + c_1_02·c_1_12·c_1_3 + c_1_02·c_1_13, an element of degree 5
  12. b_6_35c_1_2·c_1_35 + c_1_22·c_1_34 + c_1_23·c_1_33 + c_1_24·c_1_32
       + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33 + c_1_1·c_1_23·c_1_32
       + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_13·c_1_33 + c_1_0·c_1_12·c_1_33
       + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_2·c_1_3 + c_1_0·c_1_14·c_1_3
       + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_22·c_1_3 + c_1_02·c_1_12·c_1_2·c_1_3
       + c_1_02·c_1_13·c_1_3 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
  13. b_6_36c_1_36 + c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34
       + c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_22·c_1_32
       + c_1_12·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_32 + c_1_0·c_1_12·c_1_33
       + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2
       + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_22
       + c_1_02·c_1_13·c_1_3 + c_1_02·c_1_13·c_1_2 + c_1_04·c_1_1·c_1_3, an element of degree 6
  14. c_8_66c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34
       + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32 + c_1_12·c_1_2·c_1_35
       + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32
       + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3
       + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32
       + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3
       + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_33
       + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_16·c_1_3
       + c_1_0·c_1_17 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32
       + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_13·c_1_33 + c_1_02·c_1_13·c_1_2·c_1_32
       + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_03·c_1_15
       + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24
       + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14
       + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009