Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 749 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t4 − t3 + 1/2·t2 + 1/2) |
| (t − 1)3 · (t4 + 1) |
- The a-invariants are -∞,-3,-7,-3. They were obtained using the first, the second power of the second, and the third filter regular parameter of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- b_2_6, an element of degree 2
- b_5_19, an element of degree 5
- b_5_20, an element of degree 5
- b_5_21, an element of degree 5
- b_8_43, an element of degree 8
- c_8_44, a Duflot regular element of degree 8
Ring relations
There are 36 minimal relations of maximal degree 16:
- b_1_0·b_1_1
- b_1_0·b_1_2
- b_1_1·b_1_2
- a_2_3·b_1_1
- a_2_4·b_1_2 + a_2_3·b_1_2
- a_2_4·b_1_0
- b_2_6·b_1_1 + b_2_6·b_1_0 + b_2_5·b_1_2 + b_2_5·b_1_0
- a_2_32
- a_2_3·a_2_4
- a_2_42
- b_2_5·b_2_6·b_1_2 + b_2_5·b_2_6·b_1_0 + b_2_52·b_1_2 + b_2_52·b_1_0
- b_1_2·b_5_19 + a_2_4·b_2_5·b_2_6 + a_2_3·b_1_24
- b_1_1·b_5_19 + a_2_4·b_2_5·b_1_12 + a_2_4·b_2_5·b_2_6
- b_1_2·b_5_20 + a_2_4·b_2_5·b_2_6 + a_2_3·b_1_24 + a_2_3·b_2_6·b_1_22
+ a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52
- b_1_0·b_5_20 + b_1_0·b_5_19 + b_2_5·b_1_04 + b_2_52·b_1_02 + a_2_3·b_1_04
+ a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52
- b_1_0·b_5_21 + b_1_0·b_5_19 + b_2_52·b_1_02 + a_2_4·b_2_62 + a_2_4·b_2_5·b_2_6
+ a_2_3·b_2_62 + a_2_3·b_2_5·b_1_02 + a_2_3·b_2_5·b_2_6
- b_1_1·b_5_21 + b_2_52·b_1_12 + a_2_4·b_2_62 + a_2_3·b_2_62 + a_2_3·b_2_5·b_2_6
- b_2_5·b_2_62·b_1_0 + b_2_52·b_2_6·b_1_0 + a_2_4·b_5_19
- b_2_5·b_2_62·b_1_0 + b_2_52·b_2_6·b_1_0 + a_2_3·b_5_20 + a_2_3·b_5_19
+ a_2_3·b_2_5·b_1_03 + a_2_3·b_2_52·b_1_0
- b_2_6·b_5_20 + b_2_5·b_5_21 + b_2_5·b_2_62·b_1_0 + b_2_52·b_1_03
+ b_2_52·b_2_6·b_1_0 + b_2_53·b_1_2 + b_2_53·b_1_1 + a_2_3·b_2_6·b_1_23 + a_2_3·b_2_62·b_1_2 + a_2_3·b_2_5·b_1_03 + a_2_3·b_2_52·b_1_0
- a_2_4·b_5_21 + a_2_4·b_2_52·b_1_1 + a_2_3·b_5_21 + a_2_3·b_5_19 + a_2_3·b_2_52·b_1_0
- b_1_24·b_5_21 + b_8_43·b_1_2 + b_2_6·b_1_27 + b_2_63·b_1_23 + b_2_64·b_1_2
+ b_2_54·b_1_2 + a_2_3·b_1_22·b_5_21 + a_2_3·b_1_27 + a_2_3·b_2_6·b_5_19 + a_2_3·b_2_62·b_1_23 + a_2_3·b_2_5·b_5_20 + a_2_3·b_2_52·b_1_03 + a_2_3·b_2_53·b_1_0
- b_1_04·b_5_19 + b_8_43·b_1_0 + b_2_64·b_1_0 + b_2_5·b_1_07 + b_2_53·b_1_03
+ b_2_54·b_1_0 + a_2_3·b_1_02·b_5_19 + a_2_3·b_2_6·b_5_19 + a_2_3·b_2_5·b_5_20 + a_2_3·b_2_5·b_1_05 + a_2_3·b_2_53·b_1_0
- b_1_14·b_5_20 + b_8_43·b_1_1 + b_2_64·b_1_0 + b_2_54·b_1_2 + b_2_54·b_1_1
+ b_2_54·b_1_0 + a_2_4·b_1_12·b_5_20 + a_2_4·b_2_52·b_1_13 + a_2_3·b_2_6·b_5_19 + a_2_3·b_2_5·b_5_20 + a_2_3·b_2_52·b_1_03 + a_2_3·b_2_53·b_1_0
- b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
+ b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_52·b_2_62 + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_23·b_5_21 + a_2_3·b_1_03·b_5_19 + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_53·b_1_02 + a_2_3·b_2_54
- b_5_212 + b_5_192 + b_2_6·b_1_23·b_5_21 + b_2_62·b_1_2·b_5_21 + b_2_62·b_1_26
+ b_2_63·b_1_24 + b_2_64·b_1_22 + b_2_5·b_2_64 + b_2_53·b_2_62 + b_2_54·b_1_12 + b_2_54·b_1_02 + a_2_4·b_2_64 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_64 + a_2_3·b_2_5·b_2_63 + c_8_44·b_1_22
- b_5_192 + b_8_43·b_1_02 + b_2_5·b_1_08 + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06
+ b_2_52·b_2_63 + b_2_53·b_2_62 + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_03·b_5_19 + c_8_44·b_1_02
- b_5_202 + b_5_192 + b_8_43·b_1_12 + b_2_5·b_1_13·b_5_20 + b_2_52·b_1_1·b_5_20
+ b_2_52·b_1_16 + b_2_52·b_1_06 + b_2_52·b_2_63 + b_2_54·b_1_02 + b_2_54·b_2_6 + a_2_4·b_1_13·b_5_20 + a_2_4·b_2_5·b_1_16 + a_2_4·b_2_52·b_1_14 + a_2_4·b_2_53·b_1_12 + a_2_4·b_2_53·b_2_6 + a_2_3·b_2_53·b_2_6 + a_2_3·b_2_54 + c_8_44·b_1_12
- b_5_19·b_5_20 + b_5_192 + b_2_5·b_1_13·b_5_20 + b_2_5·b_8_43 + b_2_5·b_2_64
+ b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06 + b_2_53·b_2_62 + b_2_54·b_1_02 + b_2_54·b_2_6 + b_2_55 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_53·b_1_12 + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_03·b_5_19 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_1_04 + a_2_3·b_2_53·b_1_02 + a_2_3·b_2_54
- b_5_20·b_5_21 + b_5_19·b_5_21 + b_2_6·b_1_23·b_5_21 + b_2_6·b_8_43 + b_2_62·b_1_26
+ b_2_64·b_1_22 + b_2_65 + b_2_5·b_2_64 + b_2_52·b_1_1·b_5_20 + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06 + b_2_52·b_2_63 + b_2_53·b_1_04 + b_2_54·b_2_6 + a_2_4·b_2_64 + a_2_4·b_2_53·b_1_12 + a_2_3·b_1_03·b_5_19 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_64 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_1_04 + a_2_3·b_2_53·b_2_6 + a_2_3·b_2_54
- b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
+ b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_2_53·b_2_6 + a_2_3·b_8_43 + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_64 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_1_06 + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_2_62 + a_2_3·b_2_53·b_2_6
- b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
+ b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_1_13·b_5_20 + a_2_4·b_8_43 + a_2_4·b_2_64 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_54 + a_2_3·b_1_03·b_5_19 + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_53·b_1_02 + a_2_3·b_2_53·b_2_6 + a_2_3·b_2_54
- b_8_43·b_5_21 + b_8_43·b_5_19 + b_2_62·b_1_29 + b_2_62·b_8_43·b_1_2
+ b_2_63·b_1_22·b_5_21 + b_2_64·b_5_21 + b_2_64·b_5_19 + b_2_64·b_1_25 + b_2_65·b_1_23 + b_2_66·b_1_2 + b_2_5·b_2_63·b_5_21 + b_2_52·b_8_43·b_1_1 + b_2_52·b_8_43·b_1_0 + b_2_52·b_2_62·b_5_21 + b_2_52·b_2_62·b_5_19 + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_21 + b_2_54·b_5_19 + b_2_55·b_2_6·b_1_0 + b_2_56·b_1_1 + b_2_56·b_1_0 + a_2_4·b_2_5·b_8_43·b_1_1 + a_2_4·b_2_55·b_1_1 + a_2_3·b_2_6·b_8_43·b_1_2 + a_2_3·b_2_62·b_1_22·b_5_21 + a_2_3·b_2_62·b_1_27 + a_2_3·b_2_63·b_1_25 + a_2_3·b_2_64·b_1_23 + a_2_3·b_2_65·b_1_2 + a_2_3·b_2_5·b_8_43·b_1_0 + a_2_3·b_2_52·b_2_6·b_5_21 + a_2_3·b_2_53·b_5_20 + a_2_3·b_2_54·b_1_03 + c_8_44·b_1_25 + a_2_3·c_8_44·b_1_23 + a_2_3·b_2_5·c_8_44·b_1_2
- b_8_43·b_5_19 + b_8_43·b_1_05 + b_2_64·b_5_19 + b_2_5·b_1_011
+ b_2_5·b_8_43·b_1_03 + b_2_5·b_2_63·b_5_19 + b_2_52·b_8_43·b_1_0 + b_2_52·b_2_62·b_5_21 + b_2_53·b_1_02·b_5_19 + b_2_53·b_1_07 + b_2_53·b_2_6·b_5_21 + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_19 + b_2_54·b_1_05 + b_2_55·b_1_03 + b_2_55·b_2_6·b_1_0 + b_2_56·b_1_0 + a_2_4·b_2_5·b_8_43·b_1_1 + a_2_4·b_2_55·b_1_1 + a_2_3·b_8_43·b_1_23 + a_2_3·b_2_64·b_1_23 + a_2_3·b_2_5·b_2_62·b_5_21 + a_2_3·b_2_52·b_1_02·b_5_19 + a_2_3·b_2_52·b_2_6·b_5_19 + a_2_3·b_2_53·b_1_05 + a_2_3·b_2_54·b_1_03 + a_2_3·b_2_55·b_1_0 + c_8_44·b_1_05 + a_2_3·c_8_44·b_1_03 + a_2_3·b_2_5·c_8_44·b_1_2
- b_8_43·b_5_21 + b_8_43·b_5_20 + b_8_43·b_1_15 + b_2_62·b_1_29
+ b_2_62·b_8_43·b_1_2 + b_2_63·b_1_22·b_5_21 + b_2_64·b_5_21 + b_2_64·b_1_25 + b_2_65·b_1_23 + b_2_66·b_1_2 + b_2_5·b_8_43·b_1_13 + b_2_5·b_8_43·b_1_03 + b_2_5·b_2_63·b_5_19 + b_2_52·b_1_19 + b_2_52·b_2_62·b_5_21 + b_2_53·b_2_6·b_5_21 + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_20 + b_2_55·b_1_13 + b_2_55·b_1_03 + b_2_55·b_2_6·b_1_0 + b_2_56·b_1_1 + b_2_56·b_1_0 + a_2_4·b_2_5·b_1_19 + a_2_4·b_2_52·b_1_12·b_5_20 + a_2_3·b_8_43·b_1_03 + a_2_3·b_2_62·b_1_22·b_5_21 + a_2_3·b_2_62·b_1_27 + a_2_3·b_2_63·b_5_19 + a_2_3·b_2_63·b_1_25 + a_2_3·b_2_65·b_1_2 + a_2_3·b_2_5·b_8_43·b_1_0 + a_2_3·b_2_5·b_2_62·b_5_19 + a_2_3·b_2_52·b_2_6·b_5_21 + a_2_3·b_2_52·b_2_6·b_5_19 + a_2_3·b_2_53·b_5_21 + a_2_3·b_2_53·b_5_20 + c_8_44·b_1_25 + c_8_44·b_1_15 + a_2_4·c_8_44·b_1_13 + a_2_3·c_8_44·b_1_23
- b_8_43·b_1_18 + b_8_43·b_1_08 + b_8_432 + b_2_6·b_8_43·b_1_26
+ b_2_62·b_1_212 + b_2_62·b_8_43·b_1_24 + b_2_68 + b_2_5·b_1_014 + b_2_5·b_8_43·b_1_16 + b_2_52·b_1_112 + b_2_52·b_8_43·b_1_14 + b_2_52·b_8_43·b_1_04 + b_2_52·b_2_66 + b_2_53·b_1_010 + b_2_53·b_2_65 + b_2_55·b_1_16 + b_2_55·b_1_06 + b_2_55·b_2_63 + b_2_56·b_1_14 + b_2_56·b_1_04 + b_2_56·b_2_62 + b_2_58 + a_2_4·b_8_43·b_1_16 + a_2_4·b_2_5·b_1_112 + a_2_4·b_2_5·b_8_43·b_1_14 + a_2_4·b_2_52·b_1_110 + a_2_4·b_2_52·b_8_43·b_1_12 + a_2_4·b_2_55·b_1_14 + a_2_4·b_2_56·b_1_12 + a_2_3·b_8_43·b_1_06 + a_2_3·b_2_6·b_8_43·b_1_24 + a_2_3·b_2_62·b_8_43·b_1_22 + a_2_3·b_2_63·b_1_28 + a_2_3·b_2_66·b_1_22 + a_2_3·b_2_5·b_1_012 + a_2_3·b_2_52·b_8_43·b_1_02 + a_2_3·b_2_53·b_1_08 + a_2_3·b_2_54·b_1_06 + a_2_3·b_2_55·b_1_04 + c_8_44·b_1_28 + c_8_44·b_1_18 + c_8_44·b_1_08
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_44, a Duflot regular element of degree 8
- b_1_24 + b_1_14 + b_1_04 + b_2_62 + b_2_5·b_2_6 + b_2_52, an element of degree 4
- b_2_62·b_1_22 + b_2_5·b_2_62 + b_2_52·b_1_12 + b_2_52·b_1_02 + b_2_52·b_2_6, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, 5, 5, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_5_19 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- b_5_21 → 0, an element of degree 5
- b_8_43 → 0, an element of degree 8
- c_8_44 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_6 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_5_19 → c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_20 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_21 → c_1_1·c_1_24 + c_1_14·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_8_43 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_44 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_6 → 0, an element of degree 2
- b_5_19 → 0, an element of degree 5
- b_5_20 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_21 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_8_43 → c_1_28 + c_1_16·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_44 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_2_6 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_5_19 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- b_5_21 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_8_43 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_17·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_44 → c_1_28 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2
+ c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_12, an element of degree 2
- b_2_6 → c_1_12, an element of degree 2
- b_5_19 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_5_20 → c_1_1·c_1_24 + c_1_12·c_1_23 + c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_5_21 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_8_43 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22, an element of degree 8
- c_8_44 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|