Cohomology of group number 749 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 2) · (t4  −  t3  +  1/2·t2  +  1/2)

    (t  −  1)3 · (t4  +  1)
  • The a-invariants are -∞,-3,-7,-3. They were obtained using the first, the second power of the second, and the third filter regular parameter of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 12 minimal generators of maximal degree 8:

  1. b_1_0, an element of degree 1
  2. b_1_1, an element of degree 1
  3. b_1_2, an element of degree 1
  4. a_2_3, a nilpotent element of degree 2
  5. a_2_4, a nilpotent element of degree 2
  6. b_2_5, an element of degree 2
  7. b_2_6, an element of degree 2
  8. b_5_19, an element of degree 5
  9. b_5_20, an element of degree 5
  10. b_5_21, an element of degree 5
  11. b_8_43, an element of degree 8
  12. c_8_44, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 36 minimal relations of maximal degree 16:

  1. b_1_0·b_1_1
  2. b_1_0·b_1_2
  3. b_1_1·b_1_2
  4. a_2_3·b_1_1
  5. a_2_4·b_1_2 + a_2_3·b_1_2
  6. a_2_4·b_1_0
  7. b_2_6·b_1_1 + b_2_6·b_1_0 + b_2_5·b_1_2 + b_2_5·b_1_0
  8. a_2_32
  9. a_2_3·a_2_4
  10. a_2_42
  11. b_2_5·b_2_6·b_1_2 + b_2_5·b_2_6·b_1_0 + b_2_52·b_1_2 + b_2_52·b_1_0
  12. b_1_2·b_5_19 + a_2_4·b_2_5·b_2_6 + a_2_3·b_1_24
  13. b_1_1·b_5_19 + a_2_4·b_2_5·b_1_12 + a_2_4·b_2_5·b_2_6
  14. b_1_2·b_5_20 + a_2_4·b_2_5·b_2_6 + a_2_3·b_1_24 + a_2_3·b_2_6·b_1_22
       + a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52
  15. b_1_0·b_5_20 + b_1_0·b_5_19 + b_2_5·b_1_04 + b_2_52·b_1_02 + a_2_3·b_1_04
       + a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52
  16. b_1_0·b_5_21 + b_1_0·b_5_19 + b_2_52·b_1_02 + a_2_4·b_2_62 + a_2_4·b_2_5·b_2_6
       + a_2_3·b_2_62 + a_2_3·b_2_5·b_1_02 + a_2_3·b_2_5·b_2_6
  17. b_1_1·b_5_21 + b_2_52·b_1_12 + a_2_4·b_2_62 + a_2_3·b_2_62 + a_2_3·b_2_5·b_2_6
  18. b_2_5·b_2_62·b_1_0 + b_2_52·b_2_6·b_1_0 + a_2_4·b_5_19
  19. b_2_5·b_2_62·b_1_0 + b_2_52·b_2_6·b_1_0 + a_2_3·b_5_20 + a_2_3·b_5_19
       + a_2_3·b_2_5·b_1_03 + a_2_3·b_2_52·b_1_0
  20. b_2_6·b_5_20 + b_2_5·b_5_21 + b_2_5·b_2_62·b_1_0 + b_2_52·b_1_03
       + b_2_52·b_2_6·b_1_0 + b_2_53·b_1_2 + b_2_53·b_1_1 + a_2_3·b_2_6·b_1_23
       + a_2_3·b_2_62·b_1_2 + a_2_3·b_2_5·b_1_03 + a_2_3·b_2_52·b_1_0
  21. a_2_4·b_5_21 + a_2_4·b_2_52·b_1_1 + a_2_3·b_5_21 + a_2_3·b_5_19 + a_2_3·b_2_52·b_1_0
  22. b_1_24·b_5_21 + b_8_43·b_1_2 + b_2_6·b_1_27 + b_2_63·b_1_23 + b_2_64·b_1_2
       + b_2_54·b_1_2 + a_2_3·b_1_22·b_5_21 + a_2_3·b_1_27 + a_2_3·b_2_6·b_5_19
       + a_2_3·b_2_62·b_1_23 + a_2_3·b_2_5·b_5_20 + a_2_3·b_2_52·b_1_03
       + a_2_3·b_2_53·b_1_0
  23. b_1_04·b_5_19 + b_8_43·b_1_0 + b_2_64·b_1_0 + b_2_5·b_1_07 + b_2_53·b_1_03
       + b_2_54·b_1_0 + a_2_3·b_1_02·b_5_19 + a_2_3·b_2_6·b_5_19 + a_2_3·b_2_5·b_5_20
       + a_2_3·b_2_5·b_1_05 + a_2_3·b_2_53·b_1_0
  24. b_1_14·b_5_20 + b_8_43·b_1_1 + b_2_64·b_1_0 + b_2_54·b_1_2 + b_2_54·b_1_1
       + b_2_54·b_1_0 + a_2_4·b_1_12·b_5_20 + a_2_4·b_2_52·b_1_13 + a_2_3·b_2_6·b_5_19
       + a_2_3·b_2_5·b_5_20 + a_2_3·b_2_52·b_1_03 + a_2_3·b_2_53·b_1_0
  25. b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
       + b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_52·b_2_62
       + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_23·b_5_21 + a_2_3·b_1_03·b_5_19
       + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_2_63
       + a_2_3·b_2_53·b_1_02 + a_2_3·b_2_54
  26. b_5_212 + b_5_192 + b_2_6·b_1_23·b_5_21 + b_2_62·b_1_2·b_5_21 + b_2_62·b_1_26
       + b_2_63·b_1_24 + b_2_64·b_1_22 + b_2_5·b_2_64 + b_2_53·b_2_62
       + b_2_54·b_1_12 + b_2_54·b_1_02 + a_2_4·b_2_64 + a_2_3·b_2_6·b_1_26
       + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_64 + a_2_3·b_2_5·b_2_63 + c_8_44·b_1_22
  27. b_5_192 + b_8_43·b_1_02 + b_2_5·b_1_08 + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06
       + b_2_52·b_2_63 + b_2_53·b_2_62 + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_03·b_5_19
       + c_8_44·b_1_02
  28. b_5_202 + b_5_192 + b_8_43·b_1_12 + b_2_5·b_1_13·b_5_20 + b_2_52·b_1_1·b_5_20
       + b_2_52·b_1_16 + b_2_52·b_1_06 + b_2_52·b_2_63 + b_2_54·b_1_02
       + b_2_54·b_2_6 + a_2_4·b_1_13·b_5_20 + a_2_4·b_2_5·b_1_16 + a_2_4·b_2_52·b_1_14
       + a_2_4·b_2_53·b_1_12 + a_2_4·b_2_53·b_2_6 + a_2_3·b_2_53·b_2_6 + a_2_3·b_2_54
       + c_8_44·b_1_12
  29. b_5_19·b_5_20 + b_5_192 + b_2_5·b_1_13·b_5_20 + b_2_5·b_8_43 + b_2_5·b_2_64
       + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06 + b_2_53·b_2_62 + b_2_54·b_1_02
       + b_2_54·b_2_6 + b_2_55 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_53·b_1_12
       + a_2_4·b_2_53·b_2_6 + a_2_3·b_1_03·b_5_19 + a_2_3·b_2_5·b_1_0·b_5_19
       + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_1_04 + a_2_3·b_2_53·b_1_02
       + a_2_3·b_2_54
  30. b_5_20·b_5_21 + b_5_19·b_5_21 + b_2_6·b_1_23·b_5_21 + b_2_6·b_8_43 + b_2_62·b_1_26
       + b_2_64·b_1_22 + b_2_65 + b_2_5·b_2_64 + b_2_52·b_1_1·b_5_20
       + b_2_52·b_1_0·b_5_19 + b_2_52·b_1_06 + b_2_52·b_2_63 + b_2_53·b_1_04
       + b_2_54·b_2_6 + a_2_4·b_2_64 + a_2_4·b_2_53·b_1_12 + a_2_3·b_1_03·b_5_19
       + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22 + a_2_3·b_2_64
       + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_1_04
       + a_2_3·b_2_53·b_2_6 + a_2_3·b_2_54
  31. b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
       + b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_2_53·b_2_6 + a_2_3·b_8_43
       + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22
       + a_2_3·b_2_64 + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_5·b_1_06
       + a_2_3·b_2_5·b_2_63 + a_2_3·b_2_52·b_2_62 + a_2_3·b_2_53·b_2_6
  32. b_5_20·b_5_21 + b_5_192 + b_2_5·b_1_03·b_5_19 + b_2_52·b_1_1·b_5_20
       + b_2_53·b_1_04 + b_2_54·b_1_02 + a_2_4·b_1_13·b_5_20 + a_2_4·b_8_43
       + a_2_4·b_2_64 + a_2_4·b_2_5·b_2_63 + a_2_4·b_2_54 + a_2_3·b_1_03·b_5_19
       + a_2_3·b_2_6·b_1_2·b_5_21 + a_2_3·b_2_6·b_1_26 + a_2_3·b_2_63·b_1_22
       + a_2_3·b_2_5·b_1_0·b_5_19 + a_2_3·b_2_53·b_1_02 + a_2_3·b_2_53·b_2_6
       + a_2_3·b_2_54
  33. b_8_43·b_5_21 + b_8_43·b_5_19 + b_2_62·b_1_29 + b_2_62·b_8_43·b_1_2
       + b_2_63·b_1_22·b_5_21 + b_2_64·b_5_21 + b_2_64·b_5_19 + b_2_64·b_1_25
       + b_2_65·b_1_23 + b_2_66·b_1_2 + b_2_5·b_2_63·b_5_21 + b_2_52·b_8_43·b_1_1
       + b_2_52·b_8_43·b_1_0 + b_2_52·b_2_62·b_5_21 + b_2_52·b_2_62·b_5_19
       + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_21 + b_2_54·b_5_19 + b_2_55·b_2_6·b_1_0
       + b_2_56·b_1_1 + b_2_56·b_1_0 + a_2_4·b_2_5·b_8_43·b_1_1 + a_2_4·b_2_55·b_1_1
       + a_2_3·b_2_6·b_8_43·b_1_2 + a_2_3·b_2_62·b_1_22·b_5_21 + a_2_3·b_2_62·b_1_27
       + a_2_3·b_2_63·b_1_25 + a_2_3·b_2_64·b_1_23 + a_2_3·b_2_65·b_1_2
       + a_2_3·b_2_5·b_8_43·b_1_0 + a_2_3·b_2_52·b_2_6·b_5_21 + a_2_3·b_2_53·b_5_20
       + a_2_3·b_2_54·b_1_03 + c_8_44·b_1_25 + a_2_3·c_8_44·b_1_23
       + a_2_3·b_2_5·c_8_44·b_1_2
  34. b_8_43·b_5_19 + b_8_43·b_1_05 + b_2_64·b_5_19 + b_2_5·b_1_011
       + b_2_5·b_8_43·b_1_03 + b_2_5·b_2_63·b_5_19 + b_2_52·b_8_43·b_1_0
       + b_2_52·b_2_62·b_5_21 + b_2_53·b_1_02·b_5_19 + b_2_53·b_1_07
       + b_2_53·b_2_6·b_5_21 + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_19 + b_2_54·b_1_05
       + b_2_55·b_1_03 + b_2_55·b_2_6·b_1_0 + b_2_56·b_1_0 + a_2_4·b_2_5·b_8_43·b_1_1
       + a_2_4·b_2_55·b_1_1 + a_2_3·b_8_43·b_1_23 + a_2_3·b_2_64·b_1_23
       + a_2_3·b_2_5·b_2_62·b_5_21 + a_2_3·b_2_52·b_1_02·b_5_19
       + a_2_3·b_2_52·b_2_6·b_5_19 + a_2_3·b_2_53·b_1_05 + a_2_3·b_2_54·b_1_03
       + a_2_3·b_2_55·b_1_0 + c_8_44·b_1_05 + a_2_3·c_8_44·b_1_03
       + a_2_3·b_2_5·c_8_44·b_1_2
  35. b_8_43·b_5_21 + b_8_43·b_5_20 + b_8_43·b_1_15 + b_2_62·b_1_29
       + b_2_62·b_8_43·b_1_2 + b_2_63·b_1_22·b_5_21 + b_2_64·b_5_21 + b_2_64·b_1_25
       + b_2_65·b_1_23 + b_2_66·b_1_2 + b_2_5·b_8_43·b_1_13 + b_2_5·b_8_43·b_1_03
       + b_2_5·b_2_63·b_5_19 + b_2_52·b_1_19 + b_2_52·b_2_62·b_5_21
       + b_2_53·b_2_6·b_5_21 + b_2_53·b_2_6·b_5_19 + b_2_54·b_5_20 + b_2_55·b_1_13
       + b_2_55·b_1_03 + b_2_55·b_2_6·b_1_0 + b_2_56·b_1_1 + b_2_56·b_1_0
       + a_2_4·b_2_5·b_1_19 + a_2_4·b_2_52·b_1_12·b_5_20 + a_2_3·b_8_43·b_1_03
       + a_2_3·b_2_62·b_1_22·b_5_21 + a_2_3·b_2_62·b_1_27 + a_2_3·b_2_63·b_5_19
       + a_2_3·b_2_63·b_1_25 + a_2_3·b_2_65·b_1_2 + a_2_3·b_2_5·b_8_43·b_1_0
       + a_2_3·b_2_5·b_2_62·b_5_19 + a_2_3·b_2_52·b_2_6·b_5_21
       + a_2_3·b_2_52·b_2_6·b_5_19 + a_2_3·b_2_53·b_5_21 + a_2_3·b_2_53·b_5_20
       + c_8_44·b_1_25 + c_8_44·b_1_15 + a_2_4·c_8_44·b_1_13 + a_2_3·c_8_44·b_1_23
  36. b_8_43·b_1_18 + b_8_43·b_1_08 + b_8_432 + b_2_6·b_8_43·b_1_26
       + b_2_62·b_1_212 + b_2_62·b_8_43·b_1_24 + b_2_68 + b_2_5·b_1_014
       + b_2_5·b_8_43·b_1_16 + b_2_52·b_1_112 + b_2_52·b_8_43·b_1_14
       + b_2_52·b_8_43·b_1_04 + b_2_52·b_2_66 + b_2_53·b_1_010 + b_2_53·b_2_65
       + b_2_55·b_1_16 + b_2_55·b_1_06 + b_2_55·b_2_63 + b_2_56·b_1_14
       + b_2_56·b_1_04 + b_2_56·b_2_62 + b_2_58 + a_2_4·b_8_43·b_1_16
       + a_2_4·b_2_5·b_1_112 + a_2_4·b_2_5·b_8_43·b_1_14 + a_2_4·b_2_52·b_1_110
       + a_2_4·b_2_52·b_8_43·b_1_12 + a_2_4·b_2_55·b_1_14 + a_2_4·b_2_56·b_1_12
       + a_2_3·b_8_43·b_1_06 + a_2_3·b_2_6·b_8_43·b_1_24 + a_2_3·b_2_62·b_8_43·b_1_22
       + a_2_3·b_2_63·b_1_28 + a_2_3·b_2_66·b_1_22 + a_2_3·b_2_5·b_1_012
       + a_2_3·b_2_52·b_8_43·b_1_02 + a_2_3·b_2_53·b_1_08 + a_2_3·b_2_54·b_1_06
       + a_2_3·b_2_55·b_1_04 + c_8_44·b_1_28 + c_8_44·b_1_18 + c_8_44·b_1_08


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_44, a Duflot regular element of degree 8
    2. b_1_24 + b_1_14 + b_1_04 + b_2_62 + b_2_5·b_2_6 + b_2_52, an element of degree 4
    3. b_2_62·b_1_22 + b_2_5·b_2_62 + b_2_52·b_1_12 + b_2_52·b_1_02 + b_2_52·b_2_6, an element of degree 6
  • The Raw Filter Degree Type of that HSOP is [-1, 5, 5, 15].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. b_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_50, an element of degree 2
  7. b_2_60, an element of degree 2
  8. b_5_190, an element of degree 5
  9. b_5_200, an element of degree 5
  10. b_5_210, an element of degree 5
  11. b_8_430, an element of degree 8
  12. c_8_44c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_0c_1_1, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_5c_1_22 + c_1_1·c_1_2, an element of degree 2
  7. b_2_6c_1_22 + c_1_1·c_1_2, an element of degree 2
  8. b_5_19c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  9. b_5_20c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  10. b_5_21c_1_1·c_1_24 + c_1_14·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  11. b_8_43c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
  12. c_8_44c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_00, an element of degree 1
  2. b_1_1c_1_1, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_5c_1_22 + c_1_1·c_1_2, an element of degree 2
  7. b_2_60, an element of degree 2
  8. b_5_190, an element of degree 5
  9. b_5_20c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  10. b_5_21c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
  11. b_8_43c_1_28 + c_1_16·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
  12. c_8_44c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16
       + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_1, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_50, an element of degree 2
  7. b_2_6c_1_22 + c_1_1·c_1_2, an element of degree 2
  8. b_5_190, an element of degree 5
  9. b_5_200, an element of degree 5
  10. b_5_21c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
  11. b_8_43c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_17·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
  12. c_8_44c_1_28 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2
       + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. b_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_5c_1_22 + c_1_12, an element of degree 2
  7. b_2_6c_1_12, an element of degree 2
  8. b_5_19c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  9. b_5_20c_1_1·c_1_24 + c_1_12·c_1_23 + c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
  10. b_5_21c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
  11. b_8_43c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22, an element of degree 8
  12. c_8_44c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009