Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 763 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 2) · (t2 + 1/2·t + 1/2) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- b_4_7, an element of degree 4
- b_4_9, an element of degree 4
- a_5_12, a nilpotent element of degree 5
- b_5_11, an element of degree 5
- b_5_13, an element of degree 5
- a_6_18, a nilpotent element of degree 6
- c_8_26, a Duflot regular element of degree 8
Ring relations
There are 47 minimal relations of maximal degree 12:
- a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_1·b_1_2
- a_1_0·b_1_2
- a_1_03
- a_2_3·b_1_2
- a_2_4·a_1_1 + a_2_3·a_1_0
- a_2_4·a_1_0 + a_2_3·a_1_1 + a_2_3·a_1_0
- a_2_32
- a_2_3·a_2_4 + a_2_3·a_1_0·a_1_1 + a_2_3·a_1_02
- a_2_42 + a_2_3·a_1_0·a_1_1 + a_2_3·a_1_02
- b_2_5·a_1_02
- b_2_5·a_1_0·a_1_1 + a_2_3·a_1_02
- a_2_3·b_2_5·a_1_0
- b_4_7·b_1_2 + b_2_52·a_1_0 + a_2_4·b_2_5·b_1_2
- b_4_7·a_1_0 + b_2_52·a_1_0 + a_2_3·b_2_5·a_1_1
- b_4_9·b_1_2 + b_2_52·a_1_0
- b_1_2·a_5_12 + a_2_4·b_2_5·b_1_22
- a_1_1·b_5_11 + a_2_3·b_4_7 + a_2_3·b_2_52
- a_1_0·b_5_11
- b_1_2·b_5_13
- a_1_1·b_5_13 + a_2_4·b_4_9 + a_2_4·b_4_7 + a_1_0·a_5_12
- a_1_0·b_5_13 + a_2_4·b_4_9 + a_2_4·b_4_7 + a_2_3·b_4_9 + a_2_3·b_4_7 + a_1_1·a_5_12
+ a_1_0·a_5_12
- b_2_5·b_4_9·a_1_0 + b_2_53·a_1_0 + a_2_3·b_4_9·a_1_1 + a_2_3·b_2_52·a_1_1
+ a_1_0·a_1_1·a_5_12
- b_2_5·b_4_7·a_1_1 + b_2_53·a_1_1 + a_2_3·b_5_11
- b_2_5·b_4_9·a_1_1 + b_2_5·b_4_9·a_1_0 + b_2_5·b_4_7·a_1_1 + b_2_53·a_1_0 + a_2_3·b_5_13
+ a_2_4·a_5_12 + a_2_3·b_4_9·a_1_1 + a_2_3·b_2_52·a_1_1
- b_2_5·b_4_9·a_1_1 + b_2_5·b_4_7·a_1_1 + a_2_4·b_5_13 + a_2_4·a_5_12 + a_2_3·a_5_12
+ a_2_3·b_4_9·a_1_0
- a_6_18·b_1_2 + a_2_4·b_2_52·b_1_2
- b_2_5·b_4_9·a_1_0 + b_2_53·a_1_0 + a_6_18·a_1_1 + a_2_4·a_5_12 + a_2_3·b_4_9·a_1_1
+ a_2_3·b_2_52·a_1_1
- a_6_18·a_1_0 + a_2_4·a_5_12 + a_2_3·a_5_12 + a_2_3·b_2_52·a_1_1 + a_1_02·a_5_12
- b_4_72 + b_2_52·b_4_9
- a_2_4·b_2_5·b_4_9 + a_2_4·b_2_5·b_4_7 + a_2_3·b_2_5·b_4_9 + a_2_3·b_2_5·b_4_7
+ b_2_5·a_1_1·a_5_12
- b_2_5·a_1_0·a_5_12 + a_2_3·a_1_1·a_5_12 + a_2_3·b_4_9·a_1_02 + a_1_02·a_1_1·a_5_12
- a_2_4·b_2_5·b_4_9 + a_2_4·b_2_5·b_4_7 + a_2_3·b_2_5·b_4_9 + a_2_3·b_2_5·b_4_7
+ b_2_5·a_1_0·a_5_12 + a_2_3·a_6_18 + a_2_3·a_1_1·a_5_12 + a_2_3·a_1_0·a_5_12
- a_2_4·b_2_5·b_4_9 + a_2_4·b_2_5·b_4_7 + a_2_3·b_2_5·b_4_9 + a_2_3·b_2_5·b_4_7
+ a_2_4·a_6_18 + a_2_3·a_1_1·a_5_12
- a_2_4·b_2_5·a_5_12 + a_2_3·b_2_5·a_5_12 + a_2_3·a_1_02·a_5_12
- b_4_7·b_5_11 + b_2_52·b_5_13 + b_2_52·a_5_12 + b_2_54·a_1_0 + a_2_4·b_2_5·b_5_11
+ a_2_4·b_2_53·b_1_2 + a_2_3·b_2_5·b_5_11
- b_4_9·b_5_11 + b_4_7·b_5_13 + b_4_7·a_5_12 + b_2_54·a_1_0 + a_2_3·b_2_5·a_5_12
+ a_2_3·b_2_53·a_1_1
- b_5_11·b_5_13 + b_2_5·b_4_7·b_4_9 + b_2_53·b_4_7 + a_5_12·b_5_11
+ a_2_4·b_2_5·b_1_2·b_5_11 + a_2_4·b_2_52·b_4_7 + a_2_4·b_2_54 + a_2_3·b_2_52·b_4_7 + a_2_3·b_2_54 + a_2_3·b_2_5·a_6_18
- a_5_12·b_5_11 + b_4_7·a_6_18 + b_2_52·a_6_18 + a_2_4·b_2_5·b_1_2·b_5_11
+ a_2_4·b_2_52·b_4_7 + a_2_4·b_2_54 + a_2_3·b_4_7·b_4_9 + a_2_3·b_2_52·b_4_9 + a_2_3·b_2_52·b_4_7 + a_2_3·b_2_54 + b_4_7·a_1_1·a_5_12
- b_5_132 + b_2_5·b_4_92 + b_2_53·b_4_9 + a_5_12·b_5_13 + a_5_12·b_5_11 + b_4_9·a_6_18
+ b_2_52·a_6_18 + a_2_4·b_4_92 + a_2_4·b_2_5·b_1_2·b_5_11 + a_2_4·b_2_54 + a_2_3·b_2_52·b_4_9 + a_2_3·b_2_54 + a_5_122 + b_4_9·a_1_0·a_5_12
- b_5_112 + b_2_52·b_1_2·b_5_11 + b_2_52·b_1_26 + b_2_53·b_4_9 + b_2_55
+ a_2_4·b_1_23·b_5_11 + a_2_4·b_2_5·b_1_26 + c_8_26·b_1_22
- b_5_132 + b_5_11·b_5_13 + b_2_5·b_4_92 + b_2_5·b_4_7·b_4_9 + b_2_53·b_4_9
+ b_2_53·b_4_7 + a_5_12·b_5_11 + a_2_4·b_4_92 + a_2_4·b_2_5·b_1_2·b_5_11 + a_2_4·b_2_54 + a_2_3·b_4_92 + a_2_3·b_2_54 + a_5_122 + b_4_9·a_1_1·a_5_12 + b_4_7·a_1_1·a_5_12 + c_8_26·a_1_02
- b_5_11·b_5_13 + b_2_5·b_4_7·b_4_9 + b_2_53·b_4_7 + a_5_12·b_5_11 + a_2_4·b_4_92
+ a_2_4·b_2_5·b_1_2·b_5_11 + a_2_4·b_2_54 + a_2_3·b_4_92 + a_2_3·b_2_54 + a_5_122 + b_4_9·a_1_1·a_5_12 + b_4_9·a_1_0·a_5_12 + b_4_7·a_1_1·a_5_12 + c_8_26·a_1_0·a_1_1
- a_6_18·b_5_11 + b_2_5·b_4_7·a_5_12 + b_2_53·a_5_12 + a_2_4·b_2_52·b_5_11
+ a_2_4·b_2_54·b_1_2 + a_2_3·b_4_7·b_5_13 + a_2_3·b_2_52·b_5_11 + a_2_3·b_2_54·a_1_1
- a_6_18·b_5_13 + b_2_5·b_4_9·a_5_12 + b_2_5·b_4_7·a_5_12 + a_2_3·b_4_9·b_5_13
+ a_2_3·b_4_9·a_5_12 + a_2_3·b_2_52·a_5_12 + a_1_1·a_5_122 + a_1_0·a_5_122 + a_2_3·c_8_26·a_1_1
- a_6_18·b_5_13 + b_2_5·b_4_9·a_5_12 + b_2_5·b_4_7·a_5_12 + a_2_3·b_4_9·b_5_13
+ a_6_18·a_5_12 + a_2_3·b_2_52·a_5_12 + a_1_0·a_5_122 + a_2_3·c_8_26·a_1_0
- a_6_182 + a_1_0·a_1_1·a_5_122
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_26, a Duflot regular element of degree 8
- b_1_24 + b_4_9 + b_4_7 + b_2_52, an element of degree 4
- b_2_5, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_4_7 → 0, an element of degree 4
- b_4_9 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_5_11 → 0, an element of degree 5
- b_5_13 → 0, an element of degree 5
- a_6_18 → 0, an element of degree 6
- c_8_26 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_4_7 → 0, an element of degree 4
- b_4_9 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_5_11 → c_1_25 + c_1_1·c_1_24 + c_1_12·c_1_23 + c_1_13·c_1_22 + c_1_02·c_1_13
+ c_1_04·c_1_1, an element of degree 5
- b_5_13 → 0, an element of degree 5
- a_6_18 → 0, an element of degree 6
- c_8_26 → c_1_14·c_1_24 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- b_4_7 → c_1_12·c_1_22, an element of degree 4
- b_4_9 → c_1_14, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_5_11 → c_1_25 + c_1_12·c_1_23, an element of degree 5
- b_5_13 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_18 → 0, an element of degree 6
- c_8_26 → c_1_12·c_1_26 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|