Cohomology of group number 779 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t2  +  t  +  1)

    (t  +  1) · (t  −  1)3 · (t2  +  1)
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 12 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. a_2_3, a nilpotent element of degree 2
  5. b_2_4, an element of degree 2
  6. c_2_5, a Duflot regular element of degree 2
  7. a_4_9, a nilpotent element of degree 4
  8. a_5_15, a nilpotent element of degree 5
  9. b_5_16, an element of degree 5
  10. b_5_17, an element of degree 5
  11. b_6_21, an element of degree 6
  12. c_8_36, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 38 minimal relations of maximal degree 12:

  1. a_1_1·a_1_2
  2. a_1_0·a_1_2
  3. a_1_22 + a_1_0·a_1_1
  4. a_2_3·a_1_2
  5. b_2_4·a_1_2 + a_1_13 + a_1_03
  6. b_2_4·a_1_12 + a_2_32 + c_2_5·a_1_12 + c_2_5·a_1_02
  7. b_2_4·a_1_03 + a_2_32·a_1_1 + c_2_5·a_1_13
  8. a_4_9·a_1_1 + a_2_3·a_1_03 + a_2_3·c_2_5·a_1_1 + c_2_5·a_1_13
  9. a_4_9·a_1_0 + a_2_3·b_2_4·a_1_0 + a_2_3·c_2_5·a_1_0
  10. a_4_9·a_1_2 + a_2_3·a_1_03
  11. a_2_3·a_4_9 + b_2_4·c_2_5·a_1_02 + a_2_32·c_2_5 + a_2_3·c_2_5·a_1_12
  12. a_1_1·a_5_15 + a_2_3·b_2_4·a_1_02 + a_2_33 + a_2_32·c_2_5 + a_2_3·c_2_5·a_1_12
       + a_2_3·c_2_5·a_1_02 + c_2_52·a_1_0·a_1_1 + c_2_52·a_1_02
  13. a_1_0·a_5_15 + b_2_42·a_1_02 + a_2_33 + a_2_3·c_2_5·a_1_12 + a_2_3·c_2_5·a_1_02
       + c_2_52·a_1_0·a_1_1 + c_2_52·a_1_02
  14. a_1_1·b_5_16 + b_2_4·a_4_9 + a_2_3·b_2_42 + a_1_2·a_5_15 + a_2_33 + a_2_3·b_2_4·c_2_5
       + a_2_32·c_2_5 + a_2_3·c_2_5·a_1_02 + c_2_52·a_1_0·a_1_1 + c_2_52·a_1_02
  15. a_1_2·b_5_16 + c_2_52·a_1_0·a_1_1
  16. a_1_0·b_5_17 + b_2_4·a_4_9 + a_1_2·a_5_15 + b_2_42·a_1_02 + a_2_3·b_2_4·c_2_5
       + a_2_32·c_2_5 + c_2_52·a_1_12 + c_2_52·a_1_0·a_1_1 + c_2_52·a_1_02
  17. a_1_2·b_5_17 + a_1_2·a_5_15 + c_2_52·a_1_0·a_1_1
  18. a_2_3·a_5_15 + a_2_3·b_2_42·a_1_0 + a_2_32·b_2_4·a_1_1 + a_2_3·b_2_4·c_2_5·a_1_1
       + a_2_3·c_2_5·a_1_03 + a_2_3·c_2_52·a_1_1 + a_2_3·c_2_52·a_1_0
  19. b_2_4·a_5_15 + b_2_43·a_1_0 + a_1_12·b_5_17 + a_1_02·b_5_16 + a_2_3·b_2_42·a_1_1
       + a_2_32·b_2_4·a_1_1 + b_2_42·c_2_5·a_1_1 + a_2_32·c_2_5·a_1_1
       + a_2_3·c_2_5·a_1_03 + b_2_4·c_2_52·a_1_1 + b_2_4·c_2_52·a_1_0 + c_2_52·a_1_03
  20. b_6_21·a_1_1 + a_2_3·b_5_17 + a_2_3·b_2_42·a_1_0 + a_2_33·a_1_1 + b_2_42·c_2_5·a_1_1
       + b_2_42·c_2_5·a_1_0 + c_2_52·a_1_13
  21. b_6_21·a_1_0 + b_2_43·a_1_1 + a_2_3·b_5_16 + a_2_33·a_1_1 + b_2_42·c_2_5·a_1_1
       + b_2_42·c_2_5·a_1_0 + a_2_32·c_2_5·a_1_1 + a_2_3·c_2_52·a_1_1 + c_2_52·a_1_03
  22. b_6_21·a_1_2 + a_2_33·a_1_1
  23. a_4_92 + b_2_42·c_2_5·a_1_02 + a_2_32·c_2_52
  24. b_2_4·a_1_1·b_5_17 + a_2_3·b_6_21 + a_2_3·b_2_42·a_1_02 + c_2_5·a_1_1·b_5_17
       + c_2_5·a_1_0·b_5_16 + a_2_3·b_2_42·c_2_5 + a_2_3·b_2_4·c_2_5·a_1_02
       + a_2_3·c_2_52·a_1_12 + a_2_3·c_2_52·a_1_02 + c_2_53·a_1_0·a_1_1
  25. a_4_9·a_5_15 + a_2_3·b_2_43·a_1_0 + a_2_3·a_1_02·b_5_16 + a_2_3·b_2_42·c_2_5·a_1_0
       + a_2_32·b_2_4·c_2_5·a_1_1 + a_2_3·b_2_4·c_2_52·a_1_1 + a_2_3·b_2_4·c_2_52·a_1_0
       + a_2_32·c_2_52·a_1_1 + a_2_3·c_2_52·a_1_03 + a_2_3·c_2_53·a_1_1
       + a_2_3·c_2_53·a_1_0
  26. a_4_9·b_5_16 + b_2_44·a_1_1 + a_2_3·b_2_4·b_5_16 + a_2_32·b_2_42·a_1_1
       + b_2_43·c_2_5·a_1_1 + a_2_3·c_2_5·b_5_16 + a_2_3·b_2_42·c_2_5·a_1_1
       + a_2_32·b_2_4·c_2_5·a_1_1 + a_2_3·b_2_4·c_2_52·a_1_1 + a_2_3·c_2_52·a_1_03
       + c_2_53·a_1_13
  27. a_4_9·b_5_17 + a_2_3·b_2_43·a_1_0 + b_2_43·c_2_5·a_1_0 + a_2_3·c_2_5·b_5_17
       + c_2_5·a_1_12·b_5_17
  28. a_5_15·b_5_17 + a_5_15·b_5_16 + a_4_9·b_6_21 + b_2_42·a_1_0·b_5_16 + b_2_43·a_4_9
       + a_5_152 + b_2_44·a_1_02 + a_2_3·b_2_4·a_1_0·b_5_16 + a_2_32·b_2_43
       + a_2_32·a_1_1·b_5_17 + a_2_33·b_2_42 + b_2_4·c_2_5·a_1_0·b_5_16
       + a_2_3·c_2_5·a_1_1·b_5_17 + b_2_42·c_2_52·a_1_02 + a_2_3·b_2_4·c_2_52·a_1_02
       + a_2_33·c_2_52 + a_2_32·c_2_53 + a_2_3·c_2_53·a_1_12 + c_2_54·a_1_12
       + c_2_54·a_1_0·a_1_1
  29. b_5_16·b_5_17 + b_2_42·b_6_21 + a_5_15·b_5_16 + a_5_152 + b_2_44·a_1_02
       + a_2_32·b_2_43 + a_2_32·a_1_1·b_5_17 + a_2_33·b_2_42 + b_2_44·c_2_5
       + b_2_42·c_2_5·a_4_9 + a_2_3·b_2_43·c_2_5 + b_2_43·c_2_5·a_1_02
       + a_2_3·c_2_5·a_1_1·b_5_17 + a_2_3·b_2_42·c_2_5·a_1_02 + c_2_52·a_1_1·b_5_17
       + c_2_52·a_1_0·b_5_16 + b_2_4·c_2_52·a_4_9 + c_2_52·a_1_2·a_5_15
       + b_2_42·c_2_52·a_1_02 + a_2_32·b_2_4·c_2_52 + a_2_3·b_2_4·c_2_52·a_1_02
       + a_2_33·c_2_52 + a_2_3·b_2_4·c_2_53 + b_2_4·c_2_53·a_1_02 + a_2_32·c_2_53
       + a_2_3·c_2_53·a_1_02 + c_2_54·a_1_12 + c_2_54·a_1_0·a_1_1
  30. a_5_15·b_5_16 + b_2_42·a_1_0·b_5_16 + b_2_44·a_1_02 + a_2_32·b_6_21
       + a_2_32·b_2_43 + b_2_42·c_2_5·a_4_9 + a_2_3·b_2_43·c_2_5
       + a_2_3·c_2_5·a_1_1·b_5_17 + a_2_3·c_2_5·a_1_0·b_5_16 + a_2_32·b_2_42·c_2_5
       + a_2_33·b_2_4·c_2_5 + c_2_52·a_1_0·b_5_16 + b_2_4·c_2_52·a_4_9
       + a_2_32·b_2_4·c_2_52 + a_2_3·b_2_4·c_2_53 + b_2_4·c_2_53·a_1_02
       + a_2_32·c_2_53 + a_2_3·c_2_53·a_1_12 + c_2_54·a_1_0·a_1_1 + c_2_54·a_1_02
  31. a_5_15·b_5_17 + a_5_15·b_5_16 + b_2_42·a_1_0·b_5_16 + b_2_43·a_4_9 + a_5_152
       + b_2_44·a_1_02 + a_2_3·b_2_4·a_1_0·b_5_16 + a_2_32·b_2_43 + a_2_33·b_2_42
       + b_2_42·c_2_5·a_4_9 + a_2_3·c_2_5·b_6_21 + a_2_3·b_2_42·c_2_52
       + b_2_42·c_2_52·a_1_02 + a_2_33·c_2_52 + a_2_32·c_2_53
       + a_2_3·c_2_53·a_1_12 + c_2_54·a_1_12 + c_2_54·a_1_0·a_1_1
  32. b_5_172 + a_5_15·b_5_17 + b_2_43·a_4_9 + a_2_3·b_2_4·b_6_21
       + a_2_3·b_2_4·a_1_0·b_5_16 + a_2_33·b_2_42 + b_2_44·c_2_5
       + b_2_4·c_2_5·a_1_0·b_5_16 + c_8_36·a_1_12 + a_2_3·c_2_5·a_1_1·b_5_17
       + c_2_52·a_1_1·b_5_17 + b_2_4·c_2_52·a_4_9 + b_2_42·c_2_52·a_1_02
       + a_2_32·b_2_4·c_2_52 + a_2_3·b_2_4·c_2_52·a_1_02 + a_2_3·b_2_4·c_2_53
       + b_2_4·c_2_53·a_1_02 + a_2_32·c_2_53 + c_2_54·a_1_02
  33. a_5_152 + b_2_44·a_1_02 + c_8_36·a_1_0·a_1_1 + a_2_32·b_2_4·c_2_52
       + b_2_4·c_2_53·a_1_02 + a_2_32·c_2_53
  34. b_5_162 + b_2_45 + b_2_42·a_1_0·b_5_16 + a_2_3·b_2_4·a_1_0·b_5_16
       + a_2_33·b_2_42 + b_2_44·c_2_5 + c_8_36·a_1_02 + b_2_43·c_2_5·a_1_02
       + a_2_3·c_2_5·a_1_0·b_5_16 + a_2_33·b_2_4·c_2_5 + a_2_3·b_2_4·c_2_52·a_1_02
       + a_2_33·c_2_52 + b_2_4·c_2_53·a_1_02 + a_2_3·c_2_53·a_1_12
       + a_2_3·c_2_53·a_1_02 + c_2_54·a_1_12 + c_2_54·a_1_0·a_1_1 + c_2_54·a_1_02
  35. b_6_21·a_5_15 + b_2_45·a_1_1 + a_2_3·b_2_42·b_5_16 + a_2_3·b_2_44·a_1_0
       + a_2_32·b_2_4·b_5_17 + a_2_33·b_5_17 + b_2_44·c_2_5·a_1_1 + b_2_44·c_2_5·a_1_0
       + a_2_3·b_2_4·c_2_5·b_5_17 + b_2_4·c_2_5·a_1_02·b_5_16 + a_2_3·b_2_43·c_2_5·a_1_0
       + a_2_32·c_2_5·b_5_17 + a_2_3·c_2_5·a_1_02·b_5_16 + a_2_32·b_2_42·c_2_5·a_1_1
       + b_2_43·c_2_52·a_1_0 + a_2_3·c_2_52·b_5_17 + a_2_3·c_2_52·b_5_16
       + c_2_52·a_1_12·b_5_17 + a_2_3·b_2_42·c_2_52·a_1_1 + a_2_32·b_2_4·c_2_52·a_1_1
       + a_2_33·c_2_52·a_1_1 + a_2_32·c_2_53·a_1_1 + a_2_3·c_2_54·a_1_1
       + c_2_54·a_1_13 + c_2_54·a_1_03
  36. b_6_21·b_5_17 + b_2_45·a_1_1 + a_2_3·b_2_42·b_5_17 + a_2_3·b_2_42·b_5_16
       + a_2_32·b_2_4·b_5_17 + b_2_42·c_2_5·b_5_17 + b_2_42·c_2_5·b_5_16
       + b_2_44·c_2_5·a_1_1 + b_2_44·c_2_5·a_1_0 + a_2_3·c_8_36·a_1_1 + a_2_32·c_2_5·b_5_17
       + a_2_32·c_2_5·b_5_16 + c_2_52·a_1_12·b_5_17 + c_2_52·a_1_02·b_5_16
       + a_2_33·c_2_52·a_1_1 + b_2_42·c_2_53·a_1_1 + a_2_3·b_2_4·c_2_53·a_1_1
       + a_2_3·c_2_53·a_1_03 + a_2_3·c_2_54·a_1_1 + c_2_54·a_1_13
  37. b_6_21·b_5_16 + b_2_43·b_5_17 + b_2_45·a_1_1 + b_2_45·a_1_0 + a_2_3·b_2_42·b_5_16
       + b_2_42·a_1_02·b_5_16 + a_2_32·b_2_4·b_5_17 + b_2_42·c_2_5·b_5_17
       + b_2_42·c_2_5·b_5_16 + b_2_44·c_2_5·a_1_1 + b_2_44·c_2_5·a_1_0 + a_2_3·c_8_36·a_1_0
       + a_2_32·c_2_5·b_5_17 + a_2_3·c_2_5·a_1_02·b_5_16 + a_2_3·c_2_52·b_5_17
       + a_2_32·b_2_4·c_2_52·a_1_1 + a_2_33·c_2_52·a_1_1 + b_2_42·c_2_53·a_1_0
       + a_2_3·b_2_4·c_2_53·a_1_0 + a_2_32·c_2_53·a_1_1 + a_2_3·c_2_53·a_1_03
       + a_2_3·c_2_54·a_1_0
  38. b_6_212 + a_2_3·b_2_42·b_6_21 + a_2_32·b_2_4·b_6_21 + b_2_45·c_2_5
       + a_2_3·b_2_44·c_2_5 + a_2_32·c_8_36 + a_2_32·c_2_5·b_6_21 + a_2_32·b_2_43·c_2_5
       + b_2_43·c_2_52·a_1_02 + a_2_33·b_2_4·c_2_52 + b_2_42·c_2_53·a_1_02
       + a_2_32·b_2_4·c_2_53 + a_2_3·b_2_4·c_2_53·a_1_02 + a_2_32·c_2_54


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_5, a Duflot regular element of degree 2
    2. c_8_36, a Duflot regular element of degree 8
    3. b_2_4, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. b_2_40, an element of degree 2
  6. c_2_5c_1_12, an element of degree 2
  7. a_4_90, an element of degree 4
  8. a_5_150, an element of degree 5
  9. b_5_160, an element of degree 5
  10. b_5_170, an element of degree 5
  11. b_6_210, an element of degree 6
  12. c_8_36c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. a_2_30, an element of degree 2
  5. b_2_4c_1_22, an element of degree 2
  6. c_2_5c_1_12, an element of degree 2
  7. a_4_90, an element of degree 4
  8. a_5_150, an element of degree 5
  9. b_5_16c_1_25 + c_1_1·c_1_24, an element of degree 5
  10. b_5_17c_1_1·c_1_24, an element of degree 5
  11. b_6_21c_1_1·c_1_25, an element of degree 6
  12. c_8_36c_1_1·c_1_27 + c_1_13·c_1_25 + c_1_16·c_1_22 + c_1_04·c_1_24 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009