Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 78 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t7 + t6 + t5 + t4 + t3 + t + 1) |
| (t + 1)2 · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 22 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- c_2_2, a Duflot regular element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_3, a nilpotent element of degree 4
- b_4_5, an element of degree 4
- a_5_3, a nilpotent element of degree 5
- a_5_5, a nilpotent element of degree 5
- a_5_6, a nilpotent element of degree 5
- a_5_9, a nilpotent element of degree 5
- a_6_9, a nilpotent element of degree 6
- b_6_10, an element of degree 6
- a_7_9, a nilpotent element of degree 7
- a_7_15, a nilpotent element of degree 7
- a_7_16, a nilpotent element of degree 7
- a_8_15, a nilpotent element of degree 8
- c_8_20, a Duflot regular element of degree 8
- a_9_24, a nilpotent element of degree 9
- a_9_25, a nilpotent element of degree 9
Ring relations
There are 189 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·a_1_1
- a_1_13
- a_2_1·a_1_1
- a_2_1·a_1_0
- a_2_12
- a_1_0·a_3_2
- a_1_1·a_3_3 + c_2_2·a_1_12
- a_1_0·a_3_3
- a_1_0·a_3_4
- a_2_1·a_3_2
- a_1_12·a_3_2
- a_2_1·a_3_3
- a_2_1·a_3_4
- a_1_12·a_3_4
- a_4_3·a_1_1
- a_4_3·a_1_0
- b_4_5·a_1_0
- a_3_2·a_3_3 + c_2_2·a_1_1·a_3_2
- a_3_3·a_3_4 + a_3_32 + a_3_22 + c_2_2·a_1_1·a_3_4 + c_2_22·a_1_12
- a_2_1·a_4_3
- a_2_1·b_4_5 + a_3_32 + c_2_22·a_1_12
- a_3_22 + b_4_5·a_1_12
- a_1_1·a_5_3
- a_1_0·a_5_3
- a_1_1·a_5_5
- a_1_0·a_5_5
- a_3_42 + a_3_22 + a_1_1·a_5_6
- a_1_0·a_5_6
- a_3_42 + a_3_3·a_3_4 + a_3_32 + a_3_2·a_3_4 + a_3_22 + a_1_1·a_5_9 + c_2_2·a_1_1·a_3_2
- a_1_0·a_5_9
- a_4_3·a_3_3 + a_4_3·a_3_2
- a_4_3·a_3_4 + a_4_3·a_3_3
- a_4_3·a_3_3 + a_2_1·a_5_3
- a_4_3·a_3_3 + a_2_1·a_5_5
- a_4_3·a_3_3 + a_2_1·a_5_6
- a_1_12·a_5_6
- a_4_3·a_3_3 + a_2_1·a_5_9
- a_4_3·a_3_3 + a_1_12·a_5_9
- a_6_9·a_1_1
- a_6_9·a_1_0 + a_4_3·a_3_3
- b_6_10·a_1_1 + b_4_5·a_3_2 + a_4_3·a_3_3
- b_6_10·a_1_0
- a_4_32
- a_3_3·a_5_3
- a_3_2·a_5_3
- a_3_4·a_5_3
- a_4_3·b_4_5 + a_3_3·a_5_5 + b_4_5·a_1_1·a_3_4
- a_3_2·a_5_5
- a_4_3·b_4_5 + a_3_4·a_5_5 + b_4_5·a_1_1·a_3_4 + b_4_5·a_1_1·a_3_2
- a_3_3·a_5_6 + b_4_5·a_1_1·a_3_2 + c_2_2·a_1_1·a_5_6
- a_3_3·a_5_9 + a_3_3·a_5_6 + a_3_2·a_5_9 + a_3_2·a_5_6 + b_4_5·a_1_1·a_3_4
+ c_2_2·b_4_5·a_1_12 + c_2_22·a_1_1·a_3_4 + c_2_23·a_1_12
- a_4_3·b_4_5 + a_3_4·a_5_9 + a_3_4·a_5_6 + a_3_3·a_5_9 + a_3_2·a_5_6 + c_2_2·a_3_32
+ c_2_22·a_1_1·a_3_2
- a_3_3·a_5_9 + c_2_2·a_1_1·a_5_9 + c_2_2·b_4_5·a_1_12
- a_2_1·a_6_9
- a_4_3·b_4_5 + a_2_1·b_6_10 + b_4_5·a_1_1·a_3_4
- a_3_2·a_5_6 + a_1_1·a_7_9 + b_4_5·a_1_1·a_3_2 + c_2_2·b_4_5·a_1_12
- a_1_0·a_7_9
- a_3_3·a_5_6 + a_1_1·a_7_15 + b_4_5·a_1_1·a_3_4 + b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_3_2
- a_1_0·a_7_15
- a_4_3·b_4_5 + a_3_4·a_5_6 + a_3_3·a_5_9 + a_3_2·a_5_6 + a_1_1·a_7_16 + b_4_5·a_1_1·a_3_4
- a_1_0·a_7_16
- a_4_3·a_5_3
- a_4_3·a_5_5
- b_4_5·a_5_3 + a_4_3·a_5_6
- b_4_5·a_5_3 + a_4_3·a_5_9 + c_2_2·a_1_12·a_5_9
- b_4_5·a_5_3 + a_6_9·a_3_3
- b_4_5·a_5_3 + a_6_9·a_3_2 + a_4_3·a_5_9
- a_6_9·a_3_4
- b_6_10·a_3_3 + b_4_5·a_5_5 + a_4_3·a_5_9 + c_2_2·b_4_5·a_3_2
- b_6_10·a_3_2 + b_4_5·a_5_3 + b_4_52·a_1_1 + a_4_3·a_5_9
- b_6_10·a_3_4 + b_4_5·a_5_9 + b_4_5·a_5_6 + b_4_5·a_5_5 + b_4_5·a_5_3 + b_4_52·a_1_1
+ c_2_2·b_4_5·a_3_4 + c_2_2·b_4_5·a_3_3 + c_2_2·b_4_5·a_3_2
- a_2_1·a_7_9
- a_1_12·a_7_9
- a_4_3·a_5_9 + a_2_1·a_7_15
- a_4_3·a_5_9 + a_2_1·a_7_16
- a_4_3·a_5_9 + a_1_12·a_7_16
- b_4_5·a_5_3 + a_8_15·a_1_1
- b_4_5·a_5_3 + a_8_15·a_1_0 + a_4_3·a_5_9
- a_5_32
- a_5_3·a_5_5
- a_5_52 + b_4_5·a_3_32 + c_2_22·b_4_5·a_1_12
- a_5_3·a_5_6
- a_5_5·a_5_6 + b_4_52·a_1_12
- a_5_3·a_5_9
- a_5_5·a_5_9 + c_2_2·b_4_5·a_1_1·a_3_2
- a_5_92 + a_5_62 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_6 + c_2_22·a_3_32
+ c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12
- a_4_3·a_6_9
- a_4_3·b_6_10 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_9 + b_4_5·a_1_1·a_5_6 + b_4_52·a_1_12
+ c_2_2·b_4_5·a_1_1·a_3_4 + c_2_2·b_4_5·a_1_1·a_3_2
- a_3_2·a_7_9 + b_4_5·a_1_1·a_5_6 + b_4_52·a_1_12 + c_2_2·b_4_5·a_1_1·a_3_2
- a_3_3·a_7_9 + b_4_5·a_3_32 + b_4_52·a_1_12 + c_2_2·a_3_3·a_5_5 + c_2_2·a_1_1·a_7_9
+ c_2_22·b_4_5·a_1_12
- b_4_5·a_6_9 + a_3_3·a_7_15 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_9
+ c_2_2·b_4_5·a_1_1·a_3_4 + c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12 + c_2_23·a_1_1·a_3_2
- a_3_3·a_7_9 + a_3_2·a_7_15 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_9 + b_4_5·a_1_1·a_5_6
+ c_2_2·a_3_3·a_5_5 + c_2_2·b_4_5·a_1_1·a_3_4
- b_4_5·a_6_9 + a_5_6·a_5_9 + a_5_62 + a_3_4·a_7_15 + a_3_4·a_7_9 + a_3_3·a_7_9
+ b_4_5·a_1_1·a_5_9 + b_4_5·a_1_1·a_5_6 + c_2_2·b_4_5·a_1_1·a_3_4 + c_2_22·a_1_1·a_5_9 + c_2_22·b_4_5·a_1_12 + c_2_23·a_1_1·a_3_4 + c_2_23·a_1_1·a_3_2 + c_2_24·a_1_12
- b_4_5·a_6_9 + a_5_6·a_5_9 + a_5_62 + a_3_4·a_7_9 + a_3_3·a_7_16 + b_4_5·a_1_1·a_5_9
+ b_4_52·a_1_12 + c_2_2·b_4_5·a_1_1·a_3_4 + c_2_22·a_1_1·a_5_9 + c_2_22·a_1_1·a_5_6
- a_3_4·a_7_9 + a_3_3·a_7_9 + a_3_2·a_7_16 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_9
+ b_4_52·a_1_12 + c_2_2·b_4_5·a_1_1·a_3_4 + c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_9 + c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12 + c_2_23·a_1_1·a_3_4 + c_2_24·a_1_12
- a_5_6·a_5_9 + a_3_4·a_7_16 + b_4_5·a_1_1·a_5_9 + b_4_5·a_1_1·a_5_6 + b_4_52·a_1_12
+ c_2_2·b_4_5·a_1_1·a_3_4 + c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_9 + c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12 + c_2_23·a_1_1·a_3_2 + c_2_24·a_1_12
- a_5_6·a_5_9 + a_5_62 + a_3_4·a_7_9 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_9
+ b_4_52·a_1_12 + c_2_2·a_1_1·a_7_16 + c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_9 + c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12
- a_5_62 + b_4_5·a_3_32 + b_4_5·a_1_1·a_5_6 + c_8_20·a_1_12
+ c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·b_4_5·a_1_12 + c_2_24·a_1_12
- a_2_1·a_8_15
- a_1_1·a_9_24 + b_4_5·a_1_1·a_5_6 + c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_6
+ c_2_22·b_4_5·a_1_12
- a_1_0·a_9_24
- a_5_6·a_5_9 + a_5_62 + a_3_3·a_7_9 + a_1_1·a_9_25 + b_4_52·a_1_12
+ c_2_2·b_4_5·a_1_1·a_3_2 + c_2_22·a_1_1·a_5_9 + c_2_22·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_12 + c_2_23·a_1_1·a_3_4 + c_2_24·a_1_12
- a_1_0·a_9_25
- a_6_9·a_5_3 + c_2_22·a_1_12·a_5_9
- a_6_9·a_5_9 + c_2_22·a_1_12·a_5_9
- b_6_10·a_5_3 + a_6_9·a_5_5
- b_6_10·a_5_5 + b_4_52·a_3_3 + a_6_9·a_5_5 + c_2_2·b_4_52·a_1_1
- b_6_10·a_5_9 + b_6_10·a_5_6 + b_4_52·a_3_4 + b_4_52·a_3_3 + b_4_52·a_3_2
+ c_2_2·b_4_5·a_5_9 + c_2_2·b_4_5·a_5_6 + c_2_2·b_4_52·a_1_1 + c_2_22·b_4_5·a_3_4 + c_2_22·b_4_5·a_3_3
- a_6_9·a_5_5 + a_4_3·a_7_9 + c_2_22·a_1_12·a_5_9
- b_6_10·a_5_6 + b_4_5·a_7_9 + b_4_52·a_3_3 + b_4_52·a_3_2 + c_2_2·b_4_5·a_5_5
+ c_2_22·a_1_12·a_5_9
- a_6_9·a_5_6 + a_4_3·a_7_15 + c_2_22·a_1_12·a_5_9
- a_6_9·a_5_6 + a_6_9·a_5_5 + a_4_3·a_7_16
- a_6_9·a_5_6 + a_6_9·a_5_5 + c_2_2·a_1_12·a_7_16 + c_2_22·a_1_12·a_5_9
- a_8_15·a_3_3 + a_6_9·a_5_5
- a_8_15·a_3_2 + a_6_9·a_5_5 + c_2_22·a_1_12·a_5_9
- a_8_15·a_3_4 + a_6_9·a_5_6 + a_6_9·a_5_5
- a_6_9·a_5_6 + a_2_1·a_9_24 + c_2_22·a_1_12·a_5_9
- a_6_9·a_5_6 + a_2_1·a_9_25
- a_6_9·a_5_6 + a_1_12·a_9_25
- a_6_92
- b_6_102 + b_4_53 + b_4_52·a_1_1·a_3_4 + b_4_52·a_1_1·a_3_2
+ c_2_2·b_4_52·a_1_12
- a_5_3·a_7_9
- a_5_5·a_7_9 + b_4_5·a_3_3·a_5_5 + b_4_52·a_1_1·a_3_2 + c_2_2·b_4_5·a_3_32
+ c_2_23·b_4_5·a_1_12
- a_5_3·a_7_15
- a_6_9·b_6_10 + a_5_5·a_7_15 + b_4_5·a_3_3·a_5_5 + b_4_5·a_1_1·a_7_9
+ b_4_52·a_1_1·a_3_4 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_2·b_4_5·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_23·b_4_5·a_1_12
- a_5_3·a_7_16
- a_6_9·b_6_10 + a_5_5·a_7_16 + b_4_5·a_3_3·a_5_5 + c_2_2·b_4_5·a_1_1·a_5_9
+ c_2_2·b_4_5·a_1_1·a_5_6 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_23·b_4_5·a_1_12
- a_6_9·b_6_10 + a_5_9·a_7_16 + a_5_9·a_7_9 + a_5_6·a_7_16 + a_5_6·a_7_15
+ b_4_5·a_1_1·a_7_9 + b_4_52·a_1_1·a_3_4 + b_4_52·a_1_1·a_3_2 + c_2_2·a_3_3·a_7_15 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_6 + c_2_22·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_23·a_1_1·a_5_6 + c_2_24·a_1_1·a_3_2 + c_2_25·a_1_12
- a_5_9·a_7_15 + a_5_9·a_7_9 + a_5_6·a_7_15 + a_5_6·a_7_9 + b_4_5·a_1_1·a_7_16
+ b_4_52·a_1_1·a_3_4 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_2·b_4_52·a_1_12 + c_2_22·a_3_3·a_5_5 + c_2_22·a_1_1·a_7_16 + c_2_22·a_1_1·a_7_9 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_23·b_4_5·a_1_12 + c_2_24·a_1_1·a_3_4 + c_2_25·a_1_12
- a_5_6·a_7_9 + b_4_5·a_3_3·a_5_5 + b_4_52·a_1_1·a_3_2 + c_8_20·a_1_1·a_3_2
+ c_2_2·b_4_5·a_1_1·a_5_6 + c_2_24·a_1_1·a_3_2
- a_6_9·b_6_10 + a_5_9·a_7_15 + a_5_6·a_7_16 + a_5_6·a_7_9 + b_4_5·a_1_1·a_7_9
+ b_4_52·a_1_1·a_3_4 + b_4_52·a_1_1·a_3_2 + c_8_20·a_1_1·a_3_4 + c_2_2·b_4_52·a_1_12 + c_2_22·a_3_3·a_5_5 + c_2_22·a_1_1·a_7_9 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_23·a_1_1·a_5_9 + c_2_23·a_1_1·a_5_6 + c_2_25·a_1_12
- a_5_6·a_7_15 + b_4_5·a_3_3·a_5_5 + b_4_5·a_1_1·a_7_16 + b_4_52·a_1_1·a_3_4
+ b_4_52·a_1_1·a_3_2 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_2·b_4_5·a_1_1·a_5_6 + c_2_2·c_8_20·a_1_12 + c_2_22·a_1_1·a_7_9 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_25·a_1_12
- a_4_3·a_8_15
- a_6_9·b_6_10 + b_4_5·a_8_15 + b_4_5·a_3_3·a_5_5 + b_4_5·a_1_1·a_7_16 + b_4_5·a_1_1·a_7_9
+ b_4_52·a_1_1·a_3_4 + b_4_52·a_1_1·a_3_2 + c_2_2·a_3_3·a_7_15 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_23·a_1_1·a_5_6 + c_2_24·a_1_1·a_3_2
- a_6_9·b_6_10 + a_3_3·a_9_24 + b_4_5·a_1_1·a_7_9 + b_4_52·a_1_1·a_3_4
+ c_2_2·a_3_3·a_7_15 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_22·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_23·a_3_32 + c_2_23·b_4_5·a_1_12 + c_2_24·a_1_1·a_3_2 + c_2_25·a_1_12
- a_3_2·a_9_24 + b_4_5·a_1_1·a_7_9 + b_4_52·a_1_1·a_3_2 + c_2_22·a_1_1·a_7_9
+ c_2_23·b_4_5·a_1_12
- a_6_9·b_6_10 + a_5_9·a_7_15 + a_5_9·a_7_9 + a_5_6·a_7_15 + a_5_6·a_7_9 + a_3_4·a_9_24
+ b_4_5·a_3_3·a_5_5 + b_4_5·a_1_1·a_7_9 + b_4_52·a_1_1·a_3_4 + c_2_2·a_3_3·a_7_15 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_22·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_23·a_3_32 + c_2_23·a_1_1·a_5_9 + c_2_23·a_1_1·a_5_6 + c_2_23·b_4_5·a_1_12 + c_2_24·a_1_1·a_3_4 + c_2_24·a_1_1·a_3_2
- a_6_9·b_6_10 + a_5_9·a_7_15 + a_5_6·a_7_15 + a_3_3·a_9_25 + b_4_52·a_1_1·a_3_2
+ c_2_2·a_3_3·a_7_15 + c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_6 + c_2_2·b_4_52·a_1_12 + c_2_22·a_1_1·a_7_9 + c_2_22·b_4_5·a_1_1·a_3_4 + c_2_23·a_3_32 + c_2_23·a_1_1·a_5_6 + c_2_23·b_4_5·a_1_12 + c_2_24·a_1_1·a_3_2 + c_2_25·a_1_12
- a_5_9·a_7_9 + a_5_6·a_7_9 + a_3_2·a_9_25 + b_4_5·a_3_3·a_5_5 + b_4_52·a_1_1·a_3_4
+ c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_6 + c_2_23·b_4_5·a_1_12
- a_5_9·a_7_15 + a_5_9·a_7_9 + a_3_4·a_9_25 + b_4_5·a_1_1·a_7_16 + b_4_5·a_1_1·a_7_9
+ c_2_2·b_4_5·a_3_32 + c_2_2·b_4_5·a_1_1·a_5_9 + c_2_2·b_4_52·a_1_12 + c_2_22·b_4_5·a_1_1·a_3_2 + c_2_23·a_1_1·a_5_6 + c_2_24·a_1_1·a_3_2
- a_5_9·a_7_15 + a_5_6·a_7_15 + b_4_5·a_3_3·a_5_5 + b_4_52·a_1_1·a_3_2
+ c_2_2·a_1_1·a_9_25 + c_2_22·a_3_3·a_5_5 + c_2_22·a_1_1·a_7_9
- a_6_9·a_7_9 + c_2_23·a_1_12·a_5_9
- b_6_10·a_7_9 + b_4_52·a_5_6 + b_4_52·a_5_5 + b_4_53·a_1_1 + a_6_9·a_7_16 + a_6_9·a_7_15
+ b_4_5·a_1_12·a_7_16 + c_2_2·b_4_52·a_3_3 + c_2_2·b_4_52·a_3_2 + c_2_22·b_4_52·a_1_1
- b_6_10·a_7_9 + b_4_52·a_5_6 + b_4_52·a_5_5 + b_4_53·a_1_1 + a_6_9·a_7_15
+ c_2_2·b_4_52·a_3_3 + c_2_2·b_4_52·a_3_2 + c_2_22·b_4_52·a_1_1 + c_2_22·a_1_12·a_7_16
- a_8_15·a_5_3 + c_2_23·a_1_12·a_5_9
- b_6_10·a_7_9 + b_4_52·a_5_6 + b_4_52·a_5_5 + b_4_53·a_1_1 + a_8_15·a_5_5
+ b_4_5·a_1_12·a_7_16 + c_2_2·b_4_52·a_3_3 + c_2_2·b_4_52·a_3_2 + c_2_22·b_4_52·a_1_1 + c_2_23·a_1_12·a_5_9
- b_6_10·a_7_9 + b_4_52·a_5_6 + b_4_52·a_5_5 + b_4_53·a_1_1 + a_8_15·a_5_6
+ b_4_5·a_1_12·a_7_16 + c_2_2·b_4_52·a_3_3 + c_2_2·b_4_52·a_3_2 + c_2_22·b_4_52·a_1_1 + c_2_23·a_1_12·a_5_9
- a_8_15·a_5_9 + a_6_9·a_7_15 + b_4_5·a_1_12·a_7_16
- a_6_9·a_7_15 + a_4_3·a_9_24 + c_2_23·a_1_12·a_5_9
- b_6_10·a_7_15 + b_6_10·a_7_9 + b_4_5·a_9_24 + b_4_52·a_5_9 + b_4_52·a_5_6 + a_6_9·a_7_15
+ c_2_2·b_4_5·a_7_15 + c_2_2·b_4_5·a_7_9 + c_2_2·b_4_52·a_3_3 + c_2_22·b_4_52·a_1_1 + c_2_23·b_4_5·a_3_3 + c_2_23·b_4_5·a_3_2 + c_2_23·a_1_12·a_5_9 + c_2_24·b_4_5·a_1_1
- a_6_9·a_7_15 + a_4_3·a_9_25
- b_6_10·a_7_16 + b_4_5·a_9_25 + b_4_53·a_1_1 + a_6_9·a_7_15 + b_4_5·a_1_12·a_7_16
+ c_2_2·b_4_5·a_7_16 + c_2_2·b_4_52·a_3_4 + c_2_2·b_4_52·a_3_2 + c_2_22·b_4_5·a_5_9 + c_2_22·b_4_5·a_5_6 + c_2_22·b_4_5·a_5_5 + c_2_22·b_4_52·a_1_1 + c_2_23·b_4_5·a_3_3 + c_2_24·b_4_5·a_1_1
- a_6_9·a_7_15 + c_2_2·a_1_12·a_9_25
- a_7_152 + b_4_52·a_1_1·a_5_6 + b_4_53·a_1_12 + c_8_20·a_3_32
+ c_2_2·b_4_5·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_5_6 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_24·b_4_5·a_1_12 + c_2_26·a_1_12
- a_7_15·a_7_16 + a_7_152 + a_7_9·a_7_15 + b_4_52·a_1_1·a_5_6 + b_4_53·a_1_12
+ c_2_2·b_4_5·a_1_1·a_7_9 + c_2_2·b_4_52·a_1_1·a_3_4 + c_2_2·c_8_20·a_1_1·a_3_4 + c_2_23·a_1_1·a_7_16 + c_2_23·a_1_1·a_7_9 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_26·a_1_12
- a_7_92 + b_4_52·a_1_1·a_5_6 + b_4_53·a_1_12 + b_4_5·c_8_20·a_1_12
+ c_2_2·b_4_52·a_1_1·a_3_2 + c_2_22·b_4_5·a_3_32 + c_2_22·b_4_52·a_1_12
- a_7_162 + a_7_92 + c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·a_1_1·a_7_9
+ c_2_2·b_4_52·a_1_1·a_3_2 + c_2_22·b_4_52·a_1_12 + c_2_22·c_8_20·a_1_12 + c_2_23·b_4_5·a_1_1·a_3_2
- b_6_10·a_8_15 + a_7_9·a_7_15 + b_4_52·a_3_32 + c_2_2·b_4_52·a_1_1·a_3_2
+ c_2_2·c_8_20·a_1_1·a_3_2 + c_2_22·b_4_52·a_1_12 + c_2_25·a_1_1·a_3_2
- a_6_9·a_8_15
- a_5_3·a_9_24
- a_7_162 + a_5_6·a_9_24 + b_4_52·a_3_32 + b_4_52·a_1_1·a_5_9 + b_4_53·a_1_12
+ c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·a_1_1·a_7_9 + c_2_22·b_4_52·a_1_12 + c_2_26·a_1_12
- a_5_5·a_9_24 + b_4_5·a_3_3·a_7_15 + b_4_52·a_3_32 + c_2_2·a_3_3·a_9_24
+ c_2_2·b_4_52·a_1_1·a_3_4 + c_2_22·a_3_3·a_7_15 + c_2_22·b_4_52·a_1_12 + c_2_23·b_4_5·a_1_1·a_3_4 + c_2_24·a_3_32 + c_2_24·b_4_5·a_1_12 + c_2_25·a_1_1·a_3_2 + c_2_26·a_1_12
- a_7_15·a_7_16 + a_7_152 + a_7_9·a_7_16 + a_7_92 + a_5_9·a_9_24 + b_4_5·a_3_3·a_7_15
+ b_4_52·a_3_32 + b_4_53·a_1_12 + c_8_20·a_1_1·a_5_9 + c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·a_3_3·a_5_5 + c_2_2·b_4_5·a_1_1·a_7_16 + c_2_2·b_4_5·a_1_1·a_7_9 + c_2_2·c_8_20·a_1_1·a_3_2 + c_2_22·b_4_5·a_3_32 + c_2_22·b_4_5·a_1_1·a_5_6 + c_2_23·a_3_3·a_5_5 + c_2_23·b_4_5·a_1_1·a_3_4 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_25·a_1_1·a_3_4 + c_2_25·a_1_1·a_3_2 + c_2_26·a_1_12
- a_5_3·a_9_25
- a_5_5·a_9_25 + a_5_5·a_9_24 + b_4_52·a_3_32 + b_4_52·a_1_1·a_5_9
+ c_2_2·b_4_5·a_1_1·a_7_9 + c_2_2·b_4_52·a_1_1·a_3_2
- a_7_162 + a_7_15·a_7_16 + a_7_152 + a_7_9·a_7_16 + a_7_92 + a_5_6·a_9_25
+ a_5_5·a_9_24 + b_4_5·a_3_3·a_7_15 + b_4_52·a_1_1·a_5_9 + c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·a_3_3·a_5_5 + c_2_2·b_4_5·a_1_1·a_7_16 + c_2_2·b_4_52·a_1_1·a_3_4 + c_2_2·b_4_52·a_1_1·a_3_2 + c_2_22·b_4_5·a_3_32 + c_2_23·a_1_1·a_7_16 + c_2_23·a_1_1·a_7_9 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_24·b_4_5·a_1_12 + c_2_25·a_1_1·a_3_4
- a_7_162 + a_7_9·a_7_15 + a_5_9·a_9_25 + b_4_5·a_3_3·a_7_15 + b_4_52·a_3_32
+ b_4_53·a_1_12 + c_8_20·a_1_1·a_5_9 + c_2_2·b_4_5·a_3_3·a_5_5 + c_2_2·b_4_5·a_1_1·a_7_9 + c_2_22·a_3_3·a_7_15 + c_2_22·b_4_5·a_3_32 + c_2_22·b_4_5·a_1_1·a_5_6 + c_2_23·a_1_1·a_7_9 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_24·a_3_32 + c_2_24·a_1_1·a_5_9 + c_2_24·a_1_1·a_5_6
- a_7_9·a_7_15 + a_5_5·a_9_24 + b_4_5·a_1_1·a_9_25 + c_2_2·b_4_5·a_1_1·a_7_16
+ c_2_2·b_4_5·a_1_1·a_7_9 + c_2_2·b_4_52·a_1_1·a_3_4 + c_2_2·b_4_52·a_1_1·a_3_2 + c_2_2·c_8_20·a_1_1·a_3_2 + c_2_22·b_4_5·a_3_32 + c_2_22·b_4_52·a_1_12 + c_2_23·a_3_3·a_5_5 + c_2_23·b_4_5·a_1_1·a_3_4 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_25·a_1_1·a_3_2
- a_7_162 + a_7_15·a_7_16 + a_7_152 + a_7_9·a_7_16 + a_7_9·a_7_15 + a_7_92
+ a_5_5·a_9_24 + b_4_5·a_3_3·a_7_15 + b_4_52·a_3_32 + c_8_20·a_1_1·a_5_9 + c_2_2·b_4_52·a_1_1·a_3_4 + c_2_2·b_4_52·a_1_1·a_3_2 + c_2_22·a_1_1·a_9_25 + c_2_22·b_4_5·a_3_32 + c_2_22·b_4_52·a_1_12 + c_2_23·a_3_3·a_5_5 + c_2_23·a_1_1·a_7_9 + c_2_23·b_4_5·a_1_1·a_3_4 + c_2_23·b_4_5·a_1_1·a_3_2 + c_2_24·a_1_1·a_5_9 + c_2_24·a_1_1·a_5_6 + c_2_24·b_4_5·a_1_12 + c_2_26·a_1_12
- a_8_15·a_7_16 + a_8_15·a_7_15 + a_8_15·a_7_9 + c_8_20·a_1_12·a_5_9
+ c_2_24·a_1_12·a_5_9
- b_6_10·a_9_24 + b_4_52·a_7_15 + b_4_52·a_7_9 + b_4_53·a_3_4 + b_4_53·a_3_3
+ b_4_53·a_3_2 + a_8_15·a_7_15 + c_2_2·b_4_5·a_9_24 + c_2_2·b_4_52·a_5_5 + c_2_2·b_4_53·a_1_1 + c_2_2·b_4_5·a_1_12·a_7_16 + c_2_22·b_4_5·a_7_15 + c_2_22·b_4_5·a_7_9 + c_2_22·b_4_52·a_3_4 + c_2_23·b_4_5·a_5_5 + c_2_24·b_4_5·a_3_3 + c_2_24·b_4_5·a_3_2 + c_2_24·a_1_12·a_5_9 + c_2_25·b_4_5·a_1_1
- a_8_15·a_7_15 + a_6_9·a_9_24 + c_2_2·b_4_5·a_1_12·a_7_16 + c_2_24·a_1_12·a_5_9
- b_6_10·a_9_25 + b_4_52·a_7_16 + b_4_53·a_3_2 + a_8_15·a_7_16 + a_8_15·a_7_15
+ c_2_2·b_4_5·a_9_25 + c_2_2·b_4_52·a_5_9 + c_2_2·b_4_52·a_5_6 + c_2_2·b_4_52·a_5_5 + c_2_2·b_4_53·a_1_1 + c_8_20·a_1_12·a_5_9 + c_2_2·b_4_5·a_1_12·a_7_16 + c_2_22·b_4_5·a_7_16 + c_2_22·b_4_52·a_3_4 + c_2_22·b_4_52·a_3_3 + c_2_23·b_4_52·a_1_1 + c_2_24·b_4_5·a_3_4 + c_2_25·b_4_5·a_1_1
- a_8_15·a_7_15 + b_4_5·a_1_12·a_9_25 + c_8_20·a_1_12·a_5_9
+ c_2_2·b_4_5·a_1_12·a_7_16
- a_8_15·a_7_16 + a_8_15·a_7_15 + a_6_9·a_9_25 + c_2_2·b_4_5·a_1_12·a_7_16
+ c_2_23·a_1_12·a_7_16 + c_2_24·a_1_12·a_5_9
- a_8_15·a_7_16 + c_8_20·a_1_12·a_5_9 + c_2_22·a_1_12·a_9_25 + c_2_23·a_1_12·a_7_16
+ c_2_24·a_1_12·a_5_9
- a_8_152
- a_7_15·a_9_24 + b_4_5·a_3_3·a_9_24 + b_4_52·a_3_3·a_5_5 + b_4_52·a_1_1·a_7_16
+ b_4_52·a_1_1·a_7_9 + c_8_20·a_3_3·a_5_5 + c_2_2·b_4_52·a_1_1·a_5_6 + c_2_2·b_4_53·a_1_12 + c_2_2·c_8_20·a_3_32 + c_2_2·b_4_5·c_8_20·a_1_12 + c_2_22·a_3_3·a_9_24 + c_2_22·b_4_5·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_7_16 + c_2_22·b_4_5·a_1_1·a_7_9 + c_2_22·b_4_52·a_1_1·a_3_2 + c_2_23·b_4_5·a_1_1·a_5_9 + c_2_23·b_4_52·a_1_12 + c_2_24·a_3_3·a_5_5 + c_2_24·a_1_1·a_7_9 + c_2_25·a_3_32 + c_2_25·a_1_1·a_5_6 + c_2_25·b_4_5·a_1_12
- a_7_15·a_9_24 + a_7_9·a_9_24 + b_4_52·a_1_1·a_7_16 + b_4_53·a_1_1·a_3_4
+ c_8_20·a_3_3·a_5_5 + b_4_5·c_8_20·a_1_1·a_3_2 + c_2_2·b_4_5·a_3_3·a_7_15 + c_2_2·b_4_52·a_3_32 + c_2_2·b_4_52·a_1_1·a_5_9 + c_2_2·b_4_53·a_1_12 + c_2_2·c_8_20·a_3_32 + c_2_2·b_4_5·c_8_20·a_1_12 + c_2_22·b_4_5·a_1_1·a_7_16 + c_2_22·b_4_52·a_1_1·a_3_2 + c_2_22·c_8_20·a_1_1·a_3_2 + c_2_23·a_3_3·a_7_15 + c_2_23·b_4_5·a_1_1·a_5_9 + c_2_23·b_4_52·a_1_12 + c_2_24·a_3_3·a_5_5 + c_2_24·a_1_1·a_7_9 + c_2_24·b_4_5·a_1_1·a_3_4 + c_2_24·b_4_5·a_1_1·a_3_2 + c_2_25·a_1_1·a_5_6 + c_2_27·a_1_12
- a_7_15·a_9_25 + a_7_15·a_9_24 + b_4_52·a_3_3·a_5_5 + b_4_52·a_1_1·a_7_9
+ b_4_53·a_1_1·a_3_4 + b_4_53·a_1_1·a_3_2 + c_2_2·b_4_5·a_1_1·a_9_25 + c_2_2·b_4_52·a_3_32 + c_2_2·b_4_52·a_1_1·a_5_9 + c_2_2·b_4_53·a_1_12 + c_2_2·c_8_20·a_1_1·a_5_9 + c_2_2·c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·c_8_20·a_1_12 + c_2_22·a_3_3·a_9_24 + c_2_22·b_4_5·a_1_1·a_7_16 + c_2_22·b_4_52·a_1_1·a_3_4 + c_2_22·c_8_20·a_1_1·a_3_2 + c_2_23·a_3_3·a_7_15 + c_2_23·b_4_5·a_3_32 + c_2_23·b_4_5·a_1_1·a_5_9 + c_2_23·b_4_5·a_1_1·a_5_6 + c_2_23·c_8_20·a_1_12 + c_2_24·a_1_1·a_7_9 + c_2_25·a_3_32 + c_2_25·a_1_1·a_5_9 + c_2_25·a_1_1·a_5_6 + c_2_25·b_4_5·a_1_12
- a_7_16·a_9_24 + b_4_52·a_3_3·a_5_5 + b_4_52·a_1_1·a_7_16 + b_4_52·a_1_1·a_7_9
+ b_4_53·a_1_1·a_3_2 + c_8_20·a_3_3·a_5_5 + b_4_5·c_8_20·a_1_1·a_3_4 + c_2_2·b_4_5·a_3_3·a_7_15 + c_2_2·b_4_52·a_3_32 + c_2_2·b_4_52·a_1_1·a_5_6 + c_2_2·b_4_53·a_1_12 + c_2_2·c_8_20·a_3_32 + c_2_22·b_4_5·a_1_1·a_7_16 + c_2_22·b_4_5·a_1_1·a_7_9 + c_2_22·b_4_52·a_1_1·a_3_2 + c_2_22·c_8_20·a_1_1·a_3_4 + c_2_22·c_8_20·a_1_1·a_3_2 + c_2_23·a_3_3·a_7_15 + c_2_23·a_1_1·a_9_25 + c_2_23·b_4_5·a_1_1·a_5_9 + c_2_24·a_1_1·a_7_9 + c_2_24·b_4_5·a_1_1·a_3_4 + c_2_25·a_1_1·a_5_9
- a_7_16·a_9_25 + a_7_16·a_9_24 + b_4_52·a_3_3·a_5_5 + b_4_53·a_1_1·a_3_2
+ c_8_20·a_3_3·a_5_5 + c_8_20·a_1_1·a_7_9 + b_4_5·c_8_20·a_1_1·a_3_4 + c_2_2·b_4_5·a_3_3·a_7_15 + c_2_2·b_4_52·a_3_32 + c_2_2·b_4_52·a_1_1·a_5_9 + c_2_2·b_4_52·a_1_1·a_5_6 + c_2_2·c_8_20·a_3_32 + c_2_2·c_8_20·a_1_1·a_5_6 + c_2_2·b_4_5·c_8_20·a_1_12 + c_2_22·b_4_5·a_1_1·a_7_16 + c_2_22·b_4_52·a_1_1·a_3_4 + c_2_22·c_8_20·a_1_1·a_3_4 + c_2_22·c_8_20·a_1_1·a_3_2 + c_2_23·a_3_3·a_7_15 + c_2_23·b_4_5·a_1_1·a_5_6 + c_2_23·b_4_52·a_1_12 + c_2_24·a_3_3·a_5_5 + c_2_24·a_1_1·a_7_16 + c_2_24·b_4_5·a_1_1·a_3_4 + c_2_24·b_4_5·a_1_1·a_3_2 + c_2_25·a_1_1·a_5_9 + c_2_25·b_4_5·a_1_12 + c_2_26·a_1_1·a_3_4 + c_2_26·a_1_1·a_3_2 + c_2_27·a_1_12
- a_7_15·a_9_25 + a_7_15·a_9_24 + a_7_9·a_9_25 + b_4_52·a_3_3·a_5_5 + b_4_52·a_1_1·a_7_9
+ b_4_53·a_1_1·a_3_4 + b_4_53·a_1_1·a_3_2 + b_4_5·c_8_20·a_1_1·a_3_4 + b_4_5·c_8_20·a_1_1·a_3_2 + c_2_2·b_4_5·a_3_3·a_7_15 + c_2_2·b_4_52·a_1_1·a_5_9 + c_2_2·b_4_52·a_1_1·a_5_6 + c_2_22·b_4_5·a_3_3·a_5_5 + c_2_22·b_4_5·a_1_1·a_7_9 + c_2_22·b_4_52·a_1_1·a_3_4 + c_2_22·b_4_52·a_1_1·a_3_2 + c_2_22·c_8_20·a_1_1·a_3_4 + c_2_22·c_8_20·a_1_1·a_3_2 + c_2_23·b_4_5·a_3_32 + c_2_24·a_1_1·a_7_9 + c_2_24·b_4_5·a_1_1·a_3_2 + c_2_25·b_4_5·a_1_12 + c_2_26·a_1_1·a_3_4 + c_2_26·a_1_1·a_3_2
- a_8_15·a_9_24 + c_2_2·b_4_5·a_1_12·a_9_25 + c_2_23·a_1_12·a_9_25
+ c_2_25·a_1_12·a_5_9
- a_8_15·a_9_25 + a_8_15·a_9_24 + b_4_52·a_1_12·a_7_16 + c_2_2·c_8_20·a_1_12·a_5_9
+ c_2_22·b_4_5·a_1_12·a_7_16 + c_2_24·a_1_12·a_7_16
- a_9_242 + b_4_53·a_3_32 + b_4_53·a_1_1·a_5_6 + b_4_5·c_8_20·a_3_32
+ b_4_52·c_8_20·a_1_12 + c_2_2·b_4_52·a_3_3·a_5_5 + c_2_2·b_4_53·a_1_1·a_3_2 + c_2_22·b_4_52·a_3_32 + c_2_22·c_8_20·a_3_32 + c_2_22·b_4_5·c_8_20·a_1_12 + c_2_23·b_4_5·a_3_3·a_5_5 + c_2_24·b_4_5·a_3_32 + c_2_24·b_4_5·a_1_1·a_5_6 + c_2_24·b_4_52·a_1_12 + c_2_25·b_4_5·a_1_1·a_3_2 + c_2_26·a_3_32 + c_2_26·b_4_5·a_1_12
- a_9_24·a_9_25 + b_4_52·a_1_1·a_9_25 + b_4_53·a_3_32 + b_4_54·a_1_12
+ b_4_5·c_8_20·a_3_32 + b_4_5·c_8_20·a_1_1·a_5_9 + b_4_5·c_8_20·a_1_1·a_5_6 + b_4_52·c_8_20·a_1_12 + c_2_2·b_4_52·a_1_1·a_7_16 + c_2_2·b_4_52·a_1_1·a_7_9 + c_2_2·b_4_53·a_1_1·a_3_2 + c_2_2·b_4_5·c_8_20·a_1_1·a_3_2 + c_2_22·b_4_5·a_3_3·a_7_15 + c_2_22·b_4_52·a_1_1·a_5_6 + c_2_22·c_8_20·a_3_32 + c_2_22·c_8_20·a_1_1·a_5_9 + c_2_22·c_8_20·a_1_1·a_5_6 + c_2_23·a_3_3·a_9_24 + c_2_23·b_4_52·a_1_1·a_3_2 + c_2_23·c_8_20·a_1_1·a_3_2 + c_2_24·a_3_3·a_7_15 + c_2_24·a_1_1·a_9_25 + c_2_24·b_4_5·a_3_32 + c_2_24·b_4_5·a_1_1·a_5_9 + c_2_24·b_4_5·a_1_1·a_5_6 + c_2_24·c_8_20·a_1_12 + c_2_25·a_1_1·a_7_16 + c_2_25·b_4_5·a_1_1·a_3_4 + c_2_26·a_1_1·a_5_9 + c_2_26·a_1_1·a_5_6 + c_2_27·a_1_1·a_3_4 + c_2_28·a_1_12
- a_9_252 + b_4_53·a_1_1·a_5_6 + b_4_5·c_8_20·a_1_1·a_5_6 + b_4_52·c_8_20·a_1_12
+ c_2_2·b_4_52·a_1_1·a_7_9 + c_2_22·b_4_52·a_3_32 + c_2_22·b_4_53·a_1_12 + c_2_22·c_8_20·a_1_1·a_5_6 + c_2_23·b_4_5·a_1_1·a_7_9 + c_2_23·b_4_52·a_1_1·a_3_2 + c_2_24·b_4_5·a_3_32 + c_2_24·b_4_5·a_1_1·a_5_6 + c_2_24·b_4_52·a_1_12 + c_2_24·c_8_20·a_1_12 + c_2_25·b_4_5·a_1_1·a_3_2 + c_2_26·a_1_1·a_5_6 + c_2_28·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_2, a Duflot regular element of degree 2
- c_8_20, a Duflot regular element of degree 8
- b_4_5, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- c_2_2 → c_1_02, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- a_5_3 → 0, an element of degree 5
- a_5_5 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- b_6_10 → 0, an element of degree 6
- a_7_9 → 0, an element of degree 7
- a_7_15 → 0, an element of degree 7
- a_7_16 → 0, an element of degree 7
- a_8_15 → 0, an element of degree 8
- c_8_20 → c_1_18, an element of degree 8
- a_9_24 → 0, an element of degree 9
- a_9_25 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- c_2_2 → c_1_22 + c_1_02, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_5 → c_1_24, an element of degree 4
- a_5_3 → 0, an element of degree 5
- a_5_5 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- b_6_10 → c_1_26, an element of degree 6
- a_7_9 → 0, an element of degree 7
- a_7_15 → 0, an element of degree 7
- a_7_16 → 0, an element of degree 7
- a_8_15 → 0, an element of degree 8
- c_8_20 → c_1_14·c_1_24 + c_1_18 + c_1_02·c_1_26 + c_1_04·c_1_24, an element of degree 8
- a_9_24 → 0, an element of degree 9
- a_9_25 → 0, an element of degree 9
|