Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 785 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 + t2 + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_3_9, an element of degree 3
- b_5_17, an element of degree 5
- b_6_20, an element of degree 6
- b_6_22, an element of degree 6
- a_7_12, a nilpotent element of degree 7
- a_7_13, a nilpotent element of degree 7
- c_8_35, a Duflot regular element of degree 8
Ring relations
There are 49 minimal relations of maximal degree 14:
- a_1_2·b_1_0
- b_1_0·b_1_1 + a_1_22
- a_1_2·b_1_1
- a_2_3·a_1_2
- b_2_5·b_1_0 + b_2_4·b_1_1
- b_2_5·a_1_22 + b_2_4·a_1_22 + a_2_32
- b_1_1·b_3_9 + a_2_3·b_2_5
- b_1_0·b_3_9 + a_2_3·b_2_4
- b_2_4·b_2_5·b_1_1 + b_2_42·b_1_1
- a_2_3·b_3_9 + a_1_22·b_3_9
- b_1_1·b_5_17 + b_2_5·b_1_14 + a_2_3·b_2_5·b_1_12 + a_2_3·b_2_52
+ a_2_3·b_2_4·b_2_5 + b_2_42·a_1_22
- b_1_0·b_5_17 + b_2_4·b_1_04 + b_2_42·b_1_02 + a_2_3·b_1_04
- b_3_92 + b_2_4·b_2_52 + b_2_42·b_2_5 + a_1_2·b_5_17 + b_2_4·a_1_2·b_3_9
+ a_2_3·b_2_4·b_2_5
- a_2_3·b_5_17 + a_2_3·b_2_5·b_1_13 + a_2_3·b_2_4·b_1_03 + a_2_3·b_2_42·b_1_0
- b_6_20·b_1_0 + b_2_42·b_1_03 + b_2_43·b_1_0 + a_2_3·b_2_4·b_1_03
+ a_2_3·b_2_42·b_1_0
- b_6_20·a_1_2 + b_2_43·a_1_2 + b_2_4·a_1_22·b_3_9
- b_6_22·b_1_1 + b_6_20·b_1_1 + b_2_5·b_1_15 + b_2_53·b_1_1 + a_2_3·b_1_15
- b_6_22·a_1_2 + b_2_53·a_1_2 + b_2_4·b_2_52·a_1_2 + b_2_42·b_2_5·a_1_2 + b_2_43·a_1_2
+ b_2_4·a_1_22·b_3_9
- b_2_4·b_6_20 + b_2_43·b_1_02 + b_2_44 + b_2_5·a_1_2·b_5_17 + b_2_52·a_1_2·b_3_9
+ a_2_3·b_2_42·b_1_02 + a_2_3·b_2_43
- b_2_5·b_6_22 + b_2_5·b_6_20 + b_2_52·b_1_14 + b_2_54 + b_2_4·b_2_53
+ b_2_42·b_2_52 + b_2_4·a_1_2·b_5_17 + a_2_3·b_2_5·b_1_14 + b_2_43·a_1_22
- b_1_1·a_7_12 + a_2_3·b_2_5·b_1_14 + a_2_3·b_2_52·b_1_12 + b_2_43·a_1_22
- b_1_0·a_7_12 + a_2_3·b_1_06 + a_2_3·b_6_22 + a_2_3·b_6_20 + a_2_3·b_2_5·b_1_14
+ a_2_3·b_2_53 + a_2_3·b_2_42·b_1_02 + b_2_43·a_1_22
- a_1_2·a_7_12 + b_2_43·a_1_22
- b_1_1·a_7_13 + a_2_3·b_6_20 + a_2_3·b_2_5·b_1_14 + a_2_3·b_2_42·b_1_02
+ a_2_3·b_2_43 + b_2_43·a_1_22
- b_1_0·a_7_13 + a_2_3·b_2_4·b_1_04 + b_2_43·a_1_22
- a_1_2·a_7_13 + b_2_43·a_1_22
- b_2_44·b_1_1 + a_1_2·b_3_9·b_5_17 + b_2_5·a_7_12 + b_2_54·a_1_2 + b_2_4·b_2_53·a_1_2
+ b_2_43·b_2_5·a_1_2 + a_2_3·b_2_52·b_1_13 + a_2_3·b_2_53·b_1_1 + b_2_42·a_1_22·b_3_9
- b_6_22·b_3_9 + b_6_20·b_3_9 + b_2_53·b_3_9 + b_2_4·b_2_52·b_3_9 + b_2_42·b_2_5·b_3_9
+ b_2_44·b_1_1 + b_2_4·a_7_12 + b_2_4·b_2_53·a_1_2 + b_2_42·b_2_52·a_1_2 + b_2_44·a_1_2 + a_2_3·b_2_52·b_1_13 + a_2_3·b_2_4·b_1_05 + a_2_3·b_2_43·b_1_0
- b_2_42·a_1_22·b_3_9 + a_2_3·a_7_12
- b_6_20·b_3_9 + b_2_43·b_3_9 + b_2_44·b_1_1 + b_2_5·a_7_13 + b_2_42·b_2_52·a_1_2
+ a_2_3·b_2_52·b_1_13 + a_2_3·b_2_43·b_1_0 + b_2_42·a_1_22·b_3_9
- b_2_44·b_1_1 + a_1_2·b_3_9·b_5_17 + b_2_4·a_7_13 + b_2_4·b_2_53·a_1_2
+ b_2_42·b_2_52·a_1_2 + b_2_43·b_2_5·a_1_2 + a_2_3·b_2_42·b_1_03 + b_2_42·a_1_22·b_3_9
- b_2_42·a_1_22·b_3_9 + a_2_3·a_7_13
- b_3_9·a_7_12 + b_2_53·a_1_2·b_3_9 + b_2_4·b_2_5·a_1_2·b_5_17
+ b_2_4·b_2_52·a_1_2·b_3_9 + b_2_42·a_1_2·b_5_17 + b_2_43·a_1_2·b_3_9 + a_2_3·b_2_43·b_2_5
- b_3_9·a_7_13 + b_2_52·a_1_2·b_5_17 + b_2_53·a_1_2·b_3_9 + b_2_4·b_2_5·a_1_2·b_5_17
+ b_2_4·b_2_52·a_1_2·b_3_9 + b_2_42·b_2_5·a_1_2·b_3_9 + a_2_3·b_2_43·b_2_5
- b_5_172 + b_2_52·b_1_16 + b_2_4·b_2_54 + b_2_42·b_1_06 + b_2_43·b_2_52
+ b_2_44·b_1_02 + b_2_52·a_1_2·b_5_17 + b_2_4·b_2_5·a_1_2·b_5_17 + c_8_35·a_1_22
- b_6_22·b_5_17 + b_2_5·b_6_20·b_1_13 + b_2_52·b_1_17 + b_2_53·b_5_17
+ b_2_4·b_6_22·b_1_03 + b_2_4·b_2_52·b_5_17 + b_2_42·b_6_22·b_1_0 + b_2_42·b_2_5·b_5_17 + b_2_43·b_5_17 + b_2_44·b_1_03 + b_2_45·b_1_0 + b_2_52·a_7_13 + b_2_4·b_2_54·a_1_2 + b_2_42·b_2_53·a_1_2 + b_2_44·b_2_5·a_1_2 + a_2_3·b_6_22·b_1_03 + a_2_3·b_2_5·b_1_17 + a_2_3·b_2_5·b_6_20·b_1_1 + a_2_3·b_2_52·b_1_15 + a_2_3·b_2_43·b_1_03
- b_6_22·b_5_17 + b_6_20·b_5_17 + b_2_52·b_1_17 + b_2_53·b_5_17
+ b_2_4·b_6_22·b_1_03 + b_2_4·b_2_52·b_5_17 + b_2_42·b_6_22·b_1_0 + b_2_42·b_2_5·b_5_17 + b_2_43·b_1_05 + b_2_45·b_1_0 + b_2_4·a_1_2·b_3_9·b_5_17 + b_2_42·a_7_13 + b_2_43·b_2_52·a_1_2 + a_2_3·b_6_22·b_1_03 + a_2_3·b_2_5·b_1_17 + a_2_3·b_2_52·b_1_15 + a_2_3·b_2_53·b_1_13 + a_2_3·b_2_44·b_1_0 + a_2_3·b_2_4·a_7_12
- b_6_20·b_6_22 + b_6_202 + b_2_5·b_6_20·b_1_14 + b_2_53·b_6_20
+ b_2_42·b_6_22·b_1_02 + b_2_43·b_6_22 + b_2_43·b_2_53 + b_2_44·b_1_04 + b_2_46 + b_2_53·a_1_2·b_5_17 + b_2_54·a_1_2·b_3_9 + b_2_4·b_2_52·a_1_2·b_5_17 + b_2_4·b_2_53·a_1_2·b_3_9 + b_2_42·b_2_5·a_1_2·b_5_17 + b_2_42·b_2_52·a_1_2·b_3_9 + a_2_3·b_6_20·b_1_14 + a_2_3·b_2_4·b_6_22·b_1_02 + a_2_3·b_2_42·b_6_22 + a_2_3·b_2_44·b_2_5 + b_2_45·a_1_22
- b_6_20·b_6_22 + b_6_202 + b_2_5·b_6_20·b_1_14 + b_2_53·b_6_20
+ b_2_42·b_6_22·b_1_02 + b_2_43·b_6_22 + b_2_43·b_2_53 + b_2_44·b_1_04 + b_2_46 + b_5_17·a_7_12 + b_2_54·a_1_2·b_3_9 + b_2_42·b_2_5·a_1_2·b_5_17 + b_2_42·b_2_52·a_1_2·b_3_9 + b_2_43·a_1_2·b_5_17 + b_2_43·b_2_5·a_1_2·b_3_9 + a_2_3·b_6_20·b_1_14 + a_2_3·b_2_52·b_1_16 + a_2_3·b_2_53·b_1_14 + a_2_3·b_2_4·b_1_08 + a_2_3·b_2_42·b_1_06 + a_2_3·b_2_44·b_1_02 + a_2_3·b_2_45
- b_5_17·a_7_13 + b_2_53·a_1_2·b_5_17 + b_2_54·a_1_2·b_3_9
+ b_2_4·b_2_52·a_1_2·b_5_17 + b_2_42·b_2_5·a_1_2·b_5_17 + b_2_42·b_2_52·a_1_2·b_3_9 + a_2_3·b_2_5·b_6_20·b_1_12 + a_2_3·b_2_52·b_1_16 + a_2_3·b_2_42·b_1_06 + a_2_3·b_2_43·b_1_04 + b_2_45·a_1_22
- b_6_222 + b_6_202 + b_2_52·b_1_18 + b_2_56 + b_2_4·b_1_010
+ b_2_4·b_6_22·b_1_04 + b_2_42·b_1_08 + b_2_42·b_6_22·b_1_02 + b_2_42·b_2_54 + b_2_44·b_1_04 + b_2_44·b_2_52 + a_2_3·b_1_010 + a_2_3·b_6_22·b_1_04 + a_2_3·b_2_4·b_1_08 + a_2_3·b_2_42·b_1_06 + a_2_3·b_2_43·b_1_04 + c_8_35·b_1_04
- b_6_202 + b_2_5·b_1_110 + b_2_5·b_6_20·b_1_14 + b_2_52·b_6_20·b_1_12
+ b_2_54·b_1_14 + b_2_55·b_1_12 + b_2_44·b_1_04 + b_2_46 + a_2_3·b_1_110 + a_2_3·b_6_20·b_1_14 + a_2_3·b_2_53·b_1_14 + a_2_3·b_2_54·b_1_12 + c_8_35·b_1_14
- b_6_20·a_7_12 + b_2_43·a_7_12 + a_2_3·b_2_5·b_6_20·b_1_13
+ a_2_3·b_2_52·b_6_20·b_1_1 + a_2_3·b_2_42·b_1_07 + a_2_3·b_2_42·b_6_22·b_1_0 + a_2_3·b_2_45·b_1_0
- b_6_22·a_7_13 + b_6_20·a_7_13 + b_2_53·a_7_13 + b_2_4·b_2_52·a_7_13
+ b_2_42·b_2_5·a_7_13 + a_2_3·b_2_5·b_6_20·b_1_13 + a_2_3·b_2_52·b_1_17 + a_2_3·b_2_4·b_6_22·b_1_03 + a_2_3·b_2_43·b_1_05 + a_2_3·b_2_44·b_1_03
- b_6_22·a_7_13 + b_6_22·a_7_12 + b_6_20·a_7_13 + b_6_20·a_7_12 + b_2_53·a_7_13
+ b_2_56·a_1_2 + b_2_4·b_2_55·a_1_2 + b_2_43·a_7_13 + b_2_43·b_2_53·a_1_2 + b_2_44·b_2_52·a_1_2 + a_2_3·b_6_22·b_1_05 + a_2_3·b_2_5·b_6_20·b_1_13 + a_2_3·b_2_53·b_1_15 + a_2_3·b_2_54·b_1_13 + a_2_3·b_2_55·b_1_1 + a_2_3·b_2_4·b_1_09 + a_2_3·b_2_45·b_1_0 + a_2_3·b_2_42·a_7_12 + a_2_3·c_8_35·b_1_03
- b_6_20·a_7_13 + b_2_43·a_7_13 + a_2_3·b_2_5·b_1_19 + a_2_3·b_2_52·b_6_20·b_1_1
+ a_2_3·b_2_54·b_1_13 + a_2_3·b_2_55·b_1_1 + a_2_3·b_2_43·b_1_05 + a_2_3·c_8_35·b_1_13
- a_7_122
- a_7_132
- a_7_12·a_7_13
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_35, a Duflot regular element of degree 8
- b_1_14 + b_1_04 + b_2_52 + b_2_4·b_2_5 + b_2_42, an element of degree 4
- b_3_9 + b_2_5·b_1_1 + b_2_4·b_1_1 + b_2_4·b_1_0, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, 4, 8, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_5_17 → 0, an element of degree 5
- b_6_20 → 0, an element of degree 6
- b_6_22 → 0, an element of degree 6
- a_7_12 → 0, an element of degree 7
- a_7_13 → 0, an element of degree 7
- c_8_35 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_5_17 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_6_20 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22, an element of degree 6
- b_6_22 → c_1_26 + c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_02·c_1_14
+ c_1_04·c_1_12, an element of degree 6
- a_7_12 → 0, an element of degree 7
- a_7_13 → 0, an element of degree 7
- c_8_35 → c_1_28 + c_1_1·c_1_27 + c_1_15·c_1_23 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_5_17 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_6_20 → c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23 + c_1_14·c_1_22
+ c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_6_22 → c_1_26 + c_1_15·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- a_7_12 → 0, an element of degree 7
- a_7_13 → 0, an element of degree 7
- c_8_35 → c_1_28 + c_1_1·c_1_27 + c_1_14·c_1_24 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_1_12, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- b_3_9 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_5_17 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_6_20 → c_1_16, an element of degree 6
- b_6_22 → c_1_26 + c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- a_7_12 → 0, an element of degree 7
- a_7_13 → 0, an element of degree 7
- c_8_35 → c_1_28 + c_1_12·c_1_26 + c_1_16·c_1_22 + c_1_18 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|