Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 834 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t7 − 2·t6 + t5 − t4 + t2 − t − 1 |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_3, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_3, a nilpotent element of degree 4
- b_4_4, an element of degree 4
- b_4_6, an element of degree 4
- b_5_7, an element of degree 5
- a_6_3, a nilpotent element of degree 6
- a_6_5, a nilpotent element of degree 6
- a_6_6, a nilpotent element of degree 6
- b_6_10, an element of degree 6
- a_7_11, a nilpotent element of degree 7
- b_7_12, an element of degree 7
- a_8_10, a nilpotent element of degree 8
- c_8_15, a Duflot regular element of degree 8
- a_9_16, a nilpotent element of degree 9
- a_10_14, a nilpotent element of degree 10
Ring relations
There are 150 minimal relations of maximal degree 20:
- a_1_1·a_1_2
- a_1_12 + a_1_0·a_1_2
- a_1_22 + a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_02·a_1_1
- b_2_3·a_1_0·a_1_1 + b_2_3·a_1_02
- a_1_1·a_3_3 + b_2_3·a_1_0·a_1_2 + b_2_3·a_1_0·a_1_1
- a_1_2·a_3_3 + b_2_3·a_1_0·a_1_1
- a_1_1·a_3_4
- a_1_0·a_3_4 + a_1_0·a_3_3 + b_2_3·a_1_0·a_1_1
- a_1_2·a_3_4 + a_1_0·a_3_3 + b_2_3·a_1_0·a_1_1
- a_4_3·a_1_1
- b_2_3·a_3_4 + b_2_32·a_1_2 + b_2_32·a_1_1 + a_4_3·a_1_0
- b_2_3·a_3_4 + b_2_32·a_1_2 + b_2_32·a_1_1 + a_4_3·a_1_2
- b_4_4·a_1_1 + b_2_32·a_1_2 + b_2_32·a_1_0
- b_4_4·a_1_0 + b_2_3·a_3_4 + b_2_3·a_3_3 + b_2_32·a_1_2 + b_2_32·a_1_1
- b_4_4·a_1_2 + b_2_3·a_3_4 + b_2_3·a_3_3 + b_2_32·a_1_1 + b_2_32·a_1_0
- b_4_6·a_1_1 + b_2_32·a_1_1
- a_3_3·a_3_4 + a_3_32
- a_3_42
- a_3_32 + b_4_6·a_1_02
- a_1_1·b_5_7
- a_4_3·a_3_4 + b_2_3·a_4_3·a_1_0
- b_4_4·a_3_3 + b_2_3·b_4_6·a_1_0 + b_2_32·a_3_3 + b_2_33·a_1_0 + a_4_3·a_3_3
+ b_2_3·a_4_3·a_1_0
- b_4_4·a_3_4 + b_4_4·a_3_3 + b_2_3·b_4_6·a_1_2 + b_2_33·a_1_2
- b_4_4·a_3_4 + b_2_32·a_3_3 + a_1_02·b_5_7 + a_4_3·a_3_3 + b_2_3·a_4_3·a_1_0
- b_4_4·a_3_4 + b_2_32·a_3_3 + a_6_3·a_1_1 + b_2_3·a_4_3·a_1_0
- b_4_4·a_3_4 + b_2_32·a_3_3 + a_6_3·a_1_0 + a_4_3·a_3_3 + b_2_3·a_4_3·a_1_0
- a_6_3·a_1_2 + a_4_3·a_3_3
- a_6_5·a_1_1 + b_2_3·a_4_3·a_1_0
- b_4_4·a_3_4 + b_2_32·a_3_3 + a_6_5·a_1_0 + b_2_3·a_4_3·a_1_0
- a_6_5·a_1_2
- a_6_6·a_1_1 + b_2_3·a_4_3·a_1_0
- b_4_4·a_3_4 + b_2_32·a_3_3 + a_6_6·a_1_0 + a_4_3·a_3_3
- a_6_6·a_1_2 + a_4_3·a_3_3 + b_2_3·a_4_3·a_1_0
- b_6_10·a_1_1 + b_4_4·a_3_4 + b_2_32·a_3_3 + b_2_33·a_1_2 + b_2_33·a_1_0
+ b_2_3·a_4_3·a_1_0
- b_6_10·a_1_0 + b_4_6·a_3_3
- b_6_10·a_1_2 + b_4_6·a_3_4 + b_4_6·a_3_3 + b_4_4·a_3_4 + b_4_4·a_3_3 + b_2_33·a_1_1
+ b_2_33·a_1_0 + a_4_3·a_3_3 + b_2_3·a_4_3·a_1_0
- a_4_32
- b_4_42 + b_2_32·b_4_6 + b_2_32·b_4_4 + b_2_34
- b_2_3·a_1_2·b_5_7 + b_2_3·a_1_0·b_5_7
- a_4_3·b_4_4 + b_2_3·a_6_6 + b_2_3·a_6_5 + b_2_32·a_4_3
- b_4_4·b_4_6 + b_2_3·b_6_10 + a_3_3·b_5_7 + b_2_3·a_1_0·b_5_7 + b_2_3·a_6_3 + b_2_32·a_4_3
+ b_4_6·a_1_0·a_3_3
- a_1_1·a_7_11
- a_3_4·b_5_7 + a_4_3·b_4_6 + b_2_32·a_4_3 + a_1_0·a_7_11 + b_4_6·a_1_0·a_3_3
- a_3_4·b_5_7 + a_4_3·b_4_6 + b_2_32·a_4_3 + a_1_2·a_7_11 + b_4_6·a_1_0·a_3_3
- a_1_1·b_7_12
- a_3_3·b_5_7 + a_1_0·b_7_12 + b_4_6·a_1_0·a_3_3
- a_3_4·b_5_7 + a_3_3·b_5_7 + a_1_2·b_7_12 + b_2_3·a_1_0·b_5_7 + b_4_6·a_1_0·a_3_3
- a_6_3·a_3_3 + a_4_3·b_4_6·a_1_0 + b_2_32·a_4_3·a_1_0
- a_6_3·a_3_4
- a_6_5·a_3_3 + b_2_3·a_4_3·a_3_3
- a_6_5·a_3_4 + b_2_32·a_4_3·a_1_0
- a_6_6·a_3_3 + a_4_3·b_4_6·a_1_0 + b_2_3·a_4_3·a_3_3 + b_2_32·a_4_3·a_1_0
- a_6_6·a_3_4 + b_2_3·a_4_3·a_3_3
- b_6_10·a_3_3 + b_4_62·a_1_0 + b_2_3·b_4_6·a_3_3 + b_2_32·b_4_6·a_1_0
+ a_4_3·b_4_6·a_1_0
- b_6_10·a_3_4 + b_4_62·a_1_2 + b_4_62·a_1_0 + b_2_3·b_4_6·a_3_3 + b_2_34·a_1_2
+ b_2_34·a_1_0 + b_2_3·a_4_3·a_3_3
- b_4_4·b_5_7 + b_2_3·b_7_12 + b_2_3·b_4_6·a_3_3 + b_2_34·a_1_2 + b_2_34·a_1_0
+ b_2_3·a_4_3·a_3_3
- a_8_10·a_1_1 + b_2_3·a_4_3·a_3_3
- a_4_3·b_5_7 + b_2_32·b_4_6·a_1_0 + b_2_34·a_1_0 + a_8_10·a_1_0 + b_2_3·a_4_3·a_3_3
+ b_2_32·a_4_3·a_1_0
- a_4_3·b_5_7 + b_2_32·b_4_6·a_1_0 + b_2_34·a_1_0 + a_8_10·a_1_2 + b_2_32·a_4_3·a_1_0
- a_4_3·a_6_3
- a_4_3·a_6_5
- b_4_6·a_6_5 + b_2_32·a_1_0·b_5_7 + b_2_32·a_6_5 + b_4_62·a_1_02
- b_4_4·a_6_5 + b_2_32·a_6_6 + b_2_32·a_6_5 + b_2_32·a_6_3 + b_2_33·a_4_3
- a_4_3·a_6_6
- b_4_4·a_6_6 + b_4_4·a_6_5 + b_4_4·a_6_3 + b_2_32·a_1_0·b_5_7 + b_2_32·a_6_3
- b_4_6·a_6_6 + b_4_4·a_6_3 + a_4_3·b_6_10 + b_2_32·a_6_5 + b_2_32·a_6_3 + b_2_33·a_4_3
+ b_4_62·a_1_02
- b_4_4·b_6_10 + b_2_3·b_4_62 + b_2_32·b_6_10 + b_2_33·b_4_6 + b_4_6·a_1_0·b_5_7
+ b_4_6·a_6_6 + b_4_6·a_6_3 + b_2_32·a_6_5 + b_2_32·a_6_3
- b_4_6·a_1_2·b_5_7 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_3 + b_2_32·a_6_3 + a_3_3·a_7_11
+ b_4_62·a_1_02
- b_4_4·a_6_3 + b_2_32·a_6_3 + b_2_3·a_1_0·a_7_11
- b_4_4·a_6_3 + b_2_32·a_6_3 + a_3_4·a_7_11
- a_3_3·b_7_12 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_6 + b_4_6·a_6_3 + b_4_4·a_6_5 + b_4_4·a_6_3
+ b_2_32·a_1_0·b_5_7 + b_2_32·a_6_5 + b_2_32·a_6_3 + b_2_33·a_4_3
- b_4_6·a_6_6 + b_4_6·a_6_3 + b_4_4·a_6_5 + b_4_4·a_6_3 + b_2_3·a_1_0·b_7_12 + b_2_32·a_6_5
+ b_2_32·a_6_3 + b_2_33·a_4_3 + b_4_62·a_1_02
- a_3_4·b_7_12 + b_4_6·a_1_2·b_5_7 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_6 + b_4_6·a_6_3
+ b_4_4·a_6_5 + b_4_4·a_6_3 + b_2_32·a_6_5 + b_2_32·a_6_3 + b_2_33·a_4_3 + b_4_62·a_1_02
- b_5_72 + b_2_3·b_4_62 + b_2_35 + b_4_6·a_1_2·b_5_7 + b_2_32·a_1_0·b_5_7
+ b_4_62·a_1_02 + c_8_15·a_1_0·a_1_2 + c_8_15·a_1_0·a_1_1 + c_8_15·a_1_02
- a_1_1·a_9_16 + c_8_15·a_1_0·a_1_1
- b_5_72 + b_2_3·b_4_62 + b_2_35 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_3
+ b_2_32·a_1_0·b_5_7 + b_2_32·a_6_3 + a_1_0·a_9_16 + c_8_15·a_1_0·a_1_1
- b_4_6·a_1_2·b_5_7 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_3 + b_2_32·a_6_3 + a_1_2·a_9_16
+ b_4_62·a_1_02 + c_8_15·a_1_0·a_1_1 + c_8_15·a_1_02
- a_6_5·b_5_7 + b_2_33·b_4_6·a_1_0 + b_2_35·a_1_0 + a_4_3·b_4_6·a_3_3
+ b_2_33·a_4_3·a_1_0
- a_6_6·b_5_7 + a_6_3·b_5_7 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + a_4_3·a_7_11
+ a_4_3·b_4_6·a_3_3 + b_2_32·a_4_3·a_3_3 + b_2_33·a_4_3·a_1_0
- a_6_3·b_5_7 + a_4_3·b_7_12 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + b_2_32·a_4_3·a_3_3
- b_6_10·b_5_7 + b_4_6·b_7_12 + a_6_6·b_5_7 + b_4_62·a_3_4 + b_2_32·b_4_6·a_3_3
+ b_2_33·b_4_6·a_1_0 + b_2_35·a_1_1 + a_4_3·b_4_6·a_3_3 + b_2_32·a_4_3·a_3_3
- b_4_4·b_7_12 + b_2_3·b_4_6·b_5_7 + b_2_32·b_7_12 + b_2_33·b_5_7 + b_2_3·b_4_62·a_1_0
+ b_2_33·b_4_6·a_1_0 + a_4_3·b_4_6·a_3_3 + b_2_33·a_4_3·a_1_0
- a_6_3·b_5_7 + a_8_10·a_3_3
- a_6_6·b_5_7 + a_6_3·b_5_7 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + a_4_3·b_4_6·a_3_3
+ b_2_3·a_8_10·a_1_0 + b_2_32·a_4_3·a_3_3
- a_6_6·b_5_7 + a_6_3·b_5_7 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + a_8_10·a_3_4
+ a_4_3·b_4_6·a_3_3 + b_2_32·a_4_3·a_3_3
- a_6_3·b_5_7 + b_4_4·a_7_11 + b_2_3·a_9_16 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3
+ b_2_35·a_1_2 + a_4_3·b_4_6·a_3_3 + b_2_32·a_4_3·a_3_3 + b_2_3·c_8_15·a_1_2 + b_2_3·c_8_15·a_1_0
- a_10_14·a_1_1 + b_2_33·a_4_3·a_1_0
- a_6_6·b_5_7 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + a_10_14·a_1_0 + a_4_3·b_4_6·a_3_3
- a_6_6·b_5_7 + b_2_32·b_4_6·a_3_3 + b_2_34·a_3_3 + a_10_14·a_1_2 + a_4_3·b_4_6·a_3_3
+ b_2_32·a_4_3·a_3_3
- a_6_32
- a_6_3·a_6_5
- a_6_52
- a_6_3·a_6_6
- a_6_62
- a_6_5·a_6_6
- a_6_6·b_6_10 + a_6_5·b_6_10 + a_4_3·b_4_62 + b_2_33·a_1_0·b_5_7 + b_2_34·a_4_3
+ b_2_32·a_1_0·a_7_11
- a_6_5·b_6_10 + b_2_32·a_1_0·b_7_12 + b_2_33·a_6_6 + b_2_33·a_6_5 + b_2_33·a_6_3
+ b_2_34·a_4_3 + b_4_62·a_1_0·a_3_3
- b_6_102 + b_4_63 + b_2_3·b_4_6·b_6_10 + b_2_32·b_4_62 + a_6_3·b_6_10
+ b_4_6·a_1_0·b_7_12 + a_4_3·b_4_62 + b_4_62·a_1_0·a_3_3
- b_5_7·b_7_12 + b_6_102 + b_4_63 + b_2_32·b_4_62 + b_2_34·b_4_4 + a_6_5·b_6_10
+ b_2_33·a_6_6 + b_2_33·a_6_5 + b_2_33·a_6_3 + b_2_34·a_4_3 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_0·a_1_2
- a_6_6·b_6_10 + a_6_5·b_6_10 + a_4_3·b_4_62 + b_2_33·a_1_0·b_5_7 + b_2_34·a_4_3
+ a_4_3·a_8_10
- b_5_7·a_7_11 + b_4_6·a_8_10 + a_4_3·b_4_62 + b_2_32·a_8_10 + b_2_33·a_1_0·b_5_7
+ b_2_34·a_4_3 + b_4_6·a_1_0·a_7_11 + b_4_62·a_1_0·a_3_3 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_02
- a_6_3·b_6_10 + a_4_3·b_4_62 + b_2_3·b_4_6·a_1_0·b_5_7 + b_2_33·a_1_0·b_5_7
+ b_2_33·a_6_3 + b_2_34·a_4_3 + a_3_3·a_9_16 + b_4_6·a_1_0·a_7_11 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_02
- b_5_7·b_7_12 + b_6_102 + b_4_63 + b_2_32·b_4_62 + b_2_34·b_4_4 + a_6_6·b_6_10
+ a_6_3·b_6_10 + b_2_3·b_4_6·a_1_0·b_5_7 + b_2_33·a_6_6 + b_2_33·a_6_5 + b_2_34·a_4_3 + b_2_3·a_1_0·a_9_16 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_02
- a_6_6·b_6_10 + a_6_5·b_6_10 + a_6_3·b_6_10 + b_2_3·b_4_6·a_1_0·b_5_7 + b_2_33·a_6_3
+ a_3_4·a_9_16
- b_5_7·b_7_12 + b_6_102 + b_4_63 + b_2_32·b_4_62 + b_2_34·b_4_4 + a_6_5·b_6_10
+ a_6_3·b_6_10 + b_4_4·a_8_10 + a_4_3·b_4_62 + b_2_3·a_10_14 + b_2_3·b_4_6·a_1_0·b_5_7 + b_2_32·a_8_10 + b_2_33·a_6_6 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_02
- a_6_3·a_7_11 + b_2_33·a_4_3·a_3_3
- b_6_10·b_7_12 + b_4_62·b_5_7 + b_2_3·b_4_6·b_7_12 + b_2_32·b_4_6·b_5_7 + a_6_3·b_7_12
+ b_4_63·a_1_2 + b_4_63·a_1_0 + b_2_33·b_4_6·a_3_3 + b_2_34·b_4_6·a_1_0 + b_2_35·a_3_3 + b_2_36·a_1_2 + a_6_6·a_7_11 + a_4_3·b_4_62·a_1_0
- a_6_6·b_7_12 + a_6_3·b_7_12 + b_2_32·b_4_62·a_1_0 + b_2_33·b_4_6·a_3_3
+ b_2_35·a_3_3 + b_2_36·a_1_0 + a_6_6·a_7_11 + a_4_3·b_4_62·a_1_0 + b_2_33·a_4_3·a_3_3 + b_2_34·a_4_3·a_1_0
- a_6_5·b_7_12 + b_2_33·b_4_6·a_3_3 + b_2_35·a_3_3 + a_4_3·b_4_62·a_1_0
+ b_2_34·a_4_3·a_1_0
- a_6_6·a_7_11 + b_2_3·a_8_10·a_3_3
- a_6_5·a_7_11 + b_2_32·a_8_10·a_1_0 + b_2_33·a_4_3·a_3_3 + b_2_34·a_4_3·a_1_0
- a_6_3·b_7_12 + a_6_6·a_7_11 + a_6_5·a_7_11 + b_4_6·a_8_10·a_1_0 + b_2_34·a_4_3·a_1_0
- a_8_10·b_5_7 + a_6_3·b_7_12 + b_2_3·b_4_6·a_7_11 + b_2_32·b_4_62·a_1_0
+ b_2_33·a_7_11 + b_2_34·b_4_6·a_1_0 + a_6_6·a_7_11 + a_6_5·a_7_11 + a_4_3·b_4_62·a_1_0 + b_2_33·a_4_3·a_3_3 + a_4_3·c_8_15·a_1_0
- a_6_6·a_7_11 + a_4_3·a_9_16 + b_2_33·a_4_3·a_3_3 + b_2_34·a_4_3·a_1_0
- b_6_10·a_7_11 + a_6_3·b_7_12 + b_4_6·a_9_16 + b_2_3·b_4_62·a_3_3 + b_2_33·b_4_6·a_3_3
+ b_2_34·b_4_6·a_1_0 + b_2_36·a_1_2 + b_2_36·a_1_0 + a_6_5·a_7_11 + b_2_33·a_4_3·a_3_3 + b_4_6·c_8_15·a_1_2 + b_4_6·c_8_15·a_1_0
- a_6_3·b_7_12 + b_4_4·a_9_16 + b_2_3·b_4_6·a_7_11 + b_2_32·a_9_16
+ b_2_32·b_4_62·a_1_0 + b_2_33·a_7_11 + b_2_35·a_3_3 + a_6_6·a_7_11 + a_4_3·b_4_62·a_1_0 + b_2_33·a_4_3·a_3_3
- a_6_3·b_7_12 + a_10_14·a_3_3 + a_6_6·a_7_11
- a_10_14·a_3_4 + a_6_6·a_7_11 + a_6_5·a_7_11 + b_2_33·a_4_3·a_3_3
- a_7_112
- a_6_3·a_8_10
- a_6_5·a_8_10 + b_2_33·a_1_0·a_7_11
- a_6_6·a_8_10 + b_2_32·a_1_0·a_9_16
- b_7_122 + b_2_3·b_4_63 + b_2_32·b_4_6·b_6_10 + b_2_33·b_4_62 + b_2_35·b_4_6
+ b_2_35·b_4_4 + b_2_37 + b_4_62·a_1_0·b_5_7 + a_4_3·b_4_6·b_6_10 + b_2_3·b_4_6·a_1_0·b_7_12 + b_2_32·b_4_6·a_1_0·b_5_7 + b_2_34·a_6_6 + b_2_34·a_6_5 + b_2_34·a_6_3 + b_4_6·a_1_0·a_9_16 + b_2_33·a_1_0·a_7_11
- a_7_11·b_7_12 + b_5_7·a_9_16 + b_2_3·b_4_6·a_1_0·b_7_12 + b_2_33·a_1_0·b_7_12
+ b_2_34·a_1_0·b_5_7 + a_6_6·a_8_10 + c_8_15·a_1_2·b_5_7 + c_8_15·a_1_0·b_5_7
- b_7_122 + b_2_3·b_4_63 + b_2_32·b_4_6·b_6_10 + b_2_33·b_4_62 + b_2_35·b_4_6
+ b_2_35·b_4_4 + b_2_37 + a_7_11·b_7_12 + b_6_10·a_8_10 + b_4_62·a_1_0·b_5_7 + b_2_3·b_4_6·a_1_0·b_7_12 + b_2_32·a_10_14 + b_2_32·b_4_6·a_1_0·b_5_7 + b_2_33·a_1_0·b_7_12 + b_2_33·a_8_10 + b_2_34·a_1_0·b_5_7 + b_2_34·a_6_5 + b_2_34·a_6_3 + b_2_35·a_4_3 + b_4_63·a_1_02 + b_2_3·b_4_6·a_1_0·a_7_11
- a_6_6·a_8_10 + a_4_3·a_10_14 + b_2_33·a_1_0·a_7_11
- b_6_10·a_8_10 + b_4_6·a_10_14 + b_2_3·b_4_6·a_8_10 + b_2_32·b_4_6·a_1_0·b_5_7
+ b_2_34·a_1_0·b_5_7 + b_2_34·a_6_5 + a_6_6·a_8_10
- b_4_4·a_10_14 + b_2_3·b_4_6·a_8_10 + b_2_33·a_1_0·b_7_12 + b_2_33·a_8_10
+ b_2_34·a_6_6 + b_2_34·a_6_5 + b_2_34·a_6_3 + b_2_35·a_4_3 + b_2_3·b_4_6·a_1_0·a_7_11 + b_2_33·a_1_0·a_7_11
- a_8_10·a_7_11 + b_2_3·b_4_6·a_8_10·a_1_0 + b_2_3·a_4_3·c_8_15·a_1_0
- a_8_10·b_7_12 + b_6_10·a_9_16 + b_4_62·a_7_11 + b_2_3·b_4_63·a_1_0
+ b_2_32·b_4_6·a_7_11 + b_2_33·a_9_16 + b_2_35·b_4_6·a_1_0 + b_2_36·a_3_3 + b_2_37·a_1_0 + a_8_10·a_7_11 + b_4_6·a_8_10·a_3_3 + b_2_33·a_8_10·a_1_0 + b_2_34·a_4_3·a_3_3 + b_4_6·c_8_15·a_3_4 + b_2_3·b_4_6·c_8_15·a_1_0 + b_2_33·c_8_15·a_1_2 + b_2_33·c_8_15·a_1_1 + b_2_33·c_8_15·a_1_0 + a_6_3·c_8_15·a_1_0
- a_6_3·a_9_16 + a_6_3·c_8_15·a_1_0 + a_4_3·c_8_15·a_3_3
- a_8_10·b_7_12 + b_2_3·b_4_6·a_9_16 + b_2_33·a_9_16 + b_2_34·b_4_6·a_3_3
+ b_2_35·b_4_6·a_1_0 + b_2_36·a_3_3 + b_2_37·a_1_0 + b_4_6·a_8_10·a_3_3 + a_4_3·b_4_62·a_3_3 + b_2_32·a_8_10·a_3_3 + b_2_34·a_4_3·a_3_3 + a_6_3·c_8_15·a_1_0 + a_4_3·c_8_15·a_3_3
- a_8_10·a_7_11 + a_6_6·a_9_16 + b_2_32·a_8_10·a_3_3 + b_2_33·a_8_10·a_1_0
+ b_2_34·a_4_3·a_3_3 + b_2_35·a_4_3·a_1_0 + a_6_3·c_8_15·a_1_0 + a_4_3·c_8_15·a_3_3 + b_2_3·a_4_3·c_8_15·a_1_0
- a_6_5·a_9_16 + b_2_32·a_8_10·a_3_3 + a_6_3·c_8_15·a_1_0 + a_4_3·c_8_15·a_3_3
- a_10_14·b_5_7 + a_8_10·b_7_12 + b_2_32·b_4_6·a_7_11 + b_2_34·a_7_11
+ b_2_32·a_8_10·a_3_3 + b_2_33·a_8_10·a_1_0 + b_2_34·a_4_3·a_3_3 + b_2_35·a_4_3·a_1_0 + b_2_3·a_4_3·c_8_15·a_1_0
- a_8_102
- a_7_11·a_9_16 + b_2_3·b_4_6·a_1_0·a_9_16 + b_2_33·a_1_0·a_9_16 + b_2_34·a_1_0·a_7_11
- b_6_10·a_10_14 + b_4_62·a_8_10 + b_2_32·b_4_6·a_1_0·b_7_12 + b_2_32·b_4_6·a_8_10
+ b_2_34·a_1_0·b_7_12 + b_2_35·a_6_6 + b_2_35·a_6_5 + b_2_35·a_6_3 + b_2_36·a_4_3 + a_7_11·a_9_16 + b_2_33·a_1_0·a_9_16
- a_6_3·a_10_14
- b_7_12·a_9_16 + b_4_62·a_8_10 + a_4_3·b_4_63 + b_2_3·b_4_6·a_10_14
+ b_2_3·b_4_62·a_1_0·b_5_7 + b_2_32·b_4_6·a_8_10 + b_2_33·a_10_14 + b_2_33·b_4_6·a_1_0·b_5_7 + b_2_36·a_4_3 + a_7_11·a_9_16 + b_4_62·a_1_0·a_7_11 + b_4_63·a_1_0·a_3_3 + b_2_34·a_1_0·a_7_11 + a_4_3·b_4_6·c_8_15 + b_2_3·c_8_15·a_1_0·b_5_7 + b_2_32·a_4_3·c_8_15 + c_8_15·a_1_0·a_7_11
- a_6_6·a_10_14 + b_2_32·b_4_6·a_1_0·a_7_11 + b_2_34·a_1_0·a_7_11
- a_6_5·a_10_14 + b_2_33·a_1_0·a_9_16 + b_2_34·a_1_0·a_7_11
- a_8_10·a_9_16 + b_2_33·a_8_10·a_3_3 + b_2_34·a_8_10·a_1_0 + b_2_35·a_4_3·a_3_3
- a_10_14·b_7_12 + b_2_3·b_4_62·a_7_11 + b_2_32·b_4_63·a_1_0 + b_2_33·b_4_62·a_3_3
+ b_2_35·a_7_11 + b_2_35·b_4_6·a_3_3 + b_2_36·b_4_6·a_1_0 + b_4_62·a_8_10·a_1_0 + a_4_3·b_4_63·a_1_0 + b_2_34·a_8_10·a_1_0 + b_2_36·a_4_3·a_1_0 + a_4_3·b_4_6·c_8_15·a_1_0 + b_2_32·a_4_3·c_8_15·a_1_0
- a_10_14·a_7_11 + b_2_3·b_4_6·a_8_10·a_3_3 + b_2_35·a_4_3·a_3_3 + b_2_36·a_4_3·a_1_0
+ b_2_3·a_4_3·c_8_15·a_3_3 + b_2_32·a_4_3·c_8_15·a_1_0
- a_9_162 + c_8_152·a_1_0·a_1_2 + c_8_152·a_1_0·a_1_1
- a_8_10·a_10_14 + b_2_33·b_4_6·a_1_0·a_7_11
- a_10_14·a_9_16 + b_2_32·b_4_6·a_8_10·a_3_3 + b_2_33·b_4_6·a_8_10·a_1_0
+ b_2_34·a_8_10·a_3_3 + b_2_32·a_4_3·c_8_15·a_3_3
- a_10_142
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_15, a Duflot regular element of degree 8
- b_4_6, an element of degree 4
- b_2_3, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- b_5_7 → 0, an element of degree 5
- a_6_3 → 0, an element of degree 6
- a_6_5 → 0, an element of degree 6
- a_6_6 → 0, an element of degree 6
- b_6_10 → 0, an element of degree 6
- a_7_11 → 0, an element of degree 7
- b_7_12 → 0, an element of degree 7
- a_8_10 → 0, an element of degree 8
- c_8_15 → c_1_08, an element of degree 8
- a_9_16 → 0, an element of degree 9
- a_10_14 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → c_1_22, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → c_1_12·c_1_22, an element of degree 4
- b_4_6 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_7 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_3 → 0, an element of degree 6
- a_6_5 → 0, an element of degree 6
- a_6_6 → 0, an element of degree 6
- b_6_10 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- a_7_11 → 0, an element of degree 7
- b_7_12 → c_1_14·c_1_23 + c_1_16·c_1_2, an element of degree 7
- a_8_10 → 0, an element of degree 8
- c_8_15 → c_1_12·c_1_26 + c_1_16·c_1_22 + c_1_18 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- a_9_16 → 0, an element of degree 9
- a_10_14 → 0, an element of degree 10
|