Cohomology of group number 835 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    t7  −  2·t6  +  t5  −  t4  +  t2  −  t  −  1

    (t  +  1) · (t  −  1)3 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 20 minimal generators of maximal degree 10:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. b_2_3, an element of degree 2
  5. a_3_3, a nilpotent element of degree 3
  6. a_3_4, a nilpotent element of degree 3
  7. a_4_3, a nilpotent element of degree 4
  8. b_4_5, an element of degree 4
  9. b_4_6, an element of degree 4
  10. b_5_7, an element of degree 5
  11. a_6_3, a nilpotent element of degree 6
  12. a_6_5, a nilpotent element of degree 6
  13. a_6_6, a nilpotent element of degree 6
  14. b_6_10, an element of degree 6
  15. b_7_10, an element of degree 7
  16. b_7_12, an element of degree 7
  17. b_8_14, an element of degree 8
  18. c_8_15, a Duflot regular element of degree 8
  19. b_9_18, an element of degree 9
  20. b_10_22, an element of degree 10

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 150 minimal relations of maximal degree 20:

  1. a_1_1·a_1_2
  2. a_1_12 + a_1_0·a_1_2
  3. a_1_22 + a_1_12 + a_1_0·a_1_1 + a_1_02
  4. a_1_02·a_1_1
  5. b_2_3·a_1_0·a_1_2
  6. a_1_1·a_3_3 + b_2_3·a_1_02
  7. a_1_2·a_3_3 + b_2_3·a_1_02
  8. a_1_1·a_3_4 + b_2_3·a_1_02
  9. a_1_0·a_3_4 + a_1_0·a_3_3 + b_2_3·a_1_0·a_1_1
  10. a_1_2·a_3_4 + a_1_0·a_3_3 + b_2_3·a_1_0·a_1_1
  11. a_4_3·a_1_1
  12. a_4_3·a_1_0
  13. b_2_3·a_3_3 + b_2_32·a_1_2 + b_2_32·a_1_0 + a_4_3·a_1_2
  14. b_4_5·a_1_1 + b_2_32·a_1_1 + b_2_32·a_1_0
  15. b_4_5·a_1_0
  16. b_4_5·a_1_2 + b_2_3·a_3_4 + b_2_32·a_1_0
  17. b_4_6·a_1_1 + b_2_32·a_1_0
  18. a_3_3·a_3_4 + a_3_32
  19. a_3_42
  20. a_3_32 + b_4_6·a_1_02
  21. a_1_1·b_5_7
  22. a_4_3·a_3_3 + b_2_3·a_4_3·a_1_2
  23. b_4_5·a_3_3 + b_2_3·b_4_6·a_1_0 + b_2_32·a_3_4 + a_4_3·a_3_4
  24. b_4_5·a_3_4 + b_4_5·a_3_3 + b_2_3·b_4_6·a_1_2 + b_2_32·a_3_4 + b_2_33·a_1_2
       + b_2_33·a_1_0 + a_4_3·a_3_4 + a_4_3·a_3_3
  25. b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0 + a_1_02·b_5_7 + a_4_3·a_3_4
  26. a_6_3·a_1_1
  27. a_6_3·a_1_0
  28. a_6_3·a_1_2 + a_4_3·a_3_4 + a_4_3·a_3_3
  29. b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0 + a_6_5·a_1_1 + a_4_3·a_3_3
  30. b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0 + a_6_5·a_1_0 + a_4_3·a_3_3
  31. a_6_5·a_1_2 + a_4_3·a_3_3
  32. b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0 + a_6_6·a_1_1
  33. b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0 + a_6_6·a_1_0 + a_4_3·a_3_4
  34. a_6_6·a_1_2 + a_4_3·a_3_4
  35. b_6_10·a_1_1 + b_2_33·a_1_0
  36. b_6_10·a_1_0 + b_4_6·a_3_3 + b_4_5·a_3_4 + b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_2
       + b_2_33·a_1_0
  37. b_6_10·a_1_2 + b_4_6·a_3_4 + b_4_6·a_3_3 + b_4_5·a_3_3 + b_2_32·a_3_4 + b_2_33·a_1_0
       + a_4_3·a_3_3
  38. a_4_32
  39. b_4_52 + b_2_32·b_4_6 + b_2_34 + b_2_32·a_4_3
  40. b_2_3·a_1_0·b_5_7
  41. a_4_3·b_4_5 + b_2_3·a_6_3 + b_2_32·a_4_3
  42. b_4_5·b_4_6 + b_4_52 + b_2_3·b_6_10 + b_2_34 + a_3_3·b_5_7 + a_4_3·b_4_6 + a_4_3·b_4_5
       + b_4_6·a_1_0·a_3_3
  43. a_1_1·b_7_10
  44. a_1_0·b_7_10 + b_4_6·a_1_0·a_3_3
  45. a_3_4·b_5_7 + a_3_3·b_5_7 + a_1_2·b_7_10 + a_4_3·b_4_6 + a_4_3·b_4_5 + b_2_32·a_4_3
       + b_4_6·a_1_0·a_3_3
  46. a_1_1·b_7_12
  47. a_3_3·b_5_7 + a_1_0·b_7_12 + b_2_3·a_1_2·b_5_7 + b_4_6·a_1_0·a_3_3
  48. a_3_4·b_5_7 + a_3_3·b_5_7 + a_1_2·b_7_12
  49. a_6_3·a_3_3 + b_2_3·a_4_3·a_3_4 + b_2_32·a_4_3·a_1_2
  50. a_6_3·a_3_4 + a_4_3·b_4_6·a_1_2 + b_2_3·a_4_3·a_3_4 + b_2_32·a_4_3·a_1_2
  51. a_6_5·a_3_3 + b_2_3·a_4_3·a_3_4
  52. a_6_5·a_3_4 + b_2_32·a_4_3·a_1_2
  53. a_6_6·a_3_3 + a_4_3·b_4_6·a_1_2 + b_2_32·a_4_3·a_1_2
  54. a_6_6·a_3_4 + b_2_3·a_4_3·a_3_4
  55. b_6_10·a_3_3 + b_4_62·a_1_0 + b_2_3·b_4_6·a_3_4 + b_2_32·b_4_6·a_1_2 + b_2_34·a_1_0
       + b_2_3·a_4_3·a_3_4 + b_2_32·a_4_3·a_1_2
  56. b_6_10·a_3_4 + b_4_62·a_1_2 + b_4_62·a_1_0 + b_2_3·b_4_6·a_3_4 + b_2_32·b_4_6·a_1_2
       + b_2_34·a_1_0 + a_4_3·b_4_6·a_1_2
  57. b_4_5·b_5_7 + b_2_3·b_7_12 + b_2_32·b_5_7 + a_4_3·b_5_7 + b_2_33·a_3_4 + b_2_34·a_1_2
       + b_2_34·a_1_1 + a_4_3·b_4_6·a_1_2 + b_2_32·a_4_3·a_1_2
  58. b_8_14·a_1_1 + b_2_3·a_4_3·a_3_4 + b_2_32·a_4_3·a_1_2
  59. b_8_14·a_1_0 + b_4_62·a_1_0 + b_2_34·a_1_0 + a_4_3·b_4_6·a_1_2
  60. b_8_14·a_1_2 + b_4_62·a_1_2 + a_4_3·b_5_7 + b_2_3·b_4_6·a_3_4 + b_2_32·b_4_6·a_1_2
       + b_2_34·a_1_0
  61. a_4_3·a_6_3
  62. b_4_5·a_6_3 + b_2_3·a_4_3·b_4_6 + b_2_32·a_6_3
  63. a_4_3·a_6_5
  64. b_4_5·a_6_5 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_3 + b_2_33·a_4_3
  65. a_4_3·a_6_6
  66. b_4_6·a_1_0·b_5_7 + b_4_6·a_6_6 + b_4_6·a_6_5 + b_4_6·a_6_3 + b_2_32·a_1_2·b_5_7
       + b_2_32·a_6_5 + b_2_33·a_4_3
  67. b_4_5·a_6_6 + b_2_3·a_4_3·b_4_6 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_6 + b_2_32·a_6_3
  68. b_4_6·a_6_3 + a_4_3·b_6_10 + b_4_62·a_1_02
  69. b_4_5·b_6_10 + b_2_3·b_4_62 + b_2_32·b_6_10 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_5
       + b_4_6·a_6_3 + b_2_3·a_4_3·b_4_6 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_2_33·a_4_3
       + b_4_62·a_1_02
  70. a_3_3·b_7_10 + b_4_6·a_6_5 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_2_32·a_6_3
       + b_2_33·a_4_3
  71. b_4_6·a_6_5 + b_2_3·a_1_2·b_7_10 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_2_32·a_6_3
       + b_2_33·a_4_3 + b_4_62·a_1_02
  72. a_3_4·b_7_10 + b_4_6·a_1_2·b_5_7 + b_4_6·a_6_5 + b_4_6·a_6_3 + b_2_3·a_4_3·b_4_6
       + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_2_32·a_6_3 + b_2_33·a_4_3
  73. a_3_3·b_7_12 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_5 + b_2_3·a_4_3·b_4_6 + b_2_32·a_1_2·b_5_7
       + b_2_32·a_6_5 + b_2_33·a_4_3
  74. a_3_4·b_7_12 + b_4_6·a_1_2·b_5_7 + b_4_6·a_1_0·b_5_7 + b_4_6·a_6_5 + b_2_3·a_4_3·b_4_6
       + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_2_33·a_4_3
  75. b_5_72 + b_2_3·b_4_62 + b_2_33·b_4_6 + b_4_6·a_1_2·b_5_7 + b_4_6·a_6_5
       + b_2_3·a_4_3·b_4_6 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + b_4_62·a_1_02
       + c_8_15·a_1_0·a_1_2 + c_8_15·a_1_0·a_1_1 + c_8_15·a_1_02
  76. a_1_1·b_9_18
  77. b_5_72 + b_2_3·b_4_62 + b_2_33·b_4_6 + a_1_0·b_9_18 + b_4_6·a_1_2·b_5_7 + b_4_6·a_6_5
       + b_2_3·a_4_3·b_4_6 + b_2_32·a_1_2·b_5_7 + b_2_32·a_6_5 + c_8_15·a_1_0·a_1_1
       + c_8_15·a_1_02
  78. b_5_72 + b_2_3·b_4_62 + b_2_33·b_4_6 + a_1_2·b_9_18 + b_4_6·a_6_5 + b_4_6·a_6_3
       + b_2_3·a_4_3·b_4_6 + b_2_32·a_6_5 + b_2_32·a_6_3
  79. a_6_5·b_5_7 + b_2_3·a_4_3·b_5_7 + b_2_32·b_4_6·a_3_4 + b_2_35·a_1_0
       + a_4_3·b_4_6·a_3_4 + b_2_33·a_4_3·a_1_2
  80. a_6_6·b_5_7 + a_6_3·b_5_7 + b_2_3·a_4_3·b_5_7 + b_2_32·b_4_6·a_3_4
       + b_2_33·b_4_6·a_1_2 + b_2_34·a_3_4 + b_2_35·a_1_2 + b_2_33·a_4_3·a_1_2
  81. a_6_3·b_5_7 + a_4_3·b_7_10 + b_2_3·b_4_62·a_1_2 + b_2_33·b_4_6·a_1_2
       + a_4_3·b_4_6·a_3_4 + b_2_33·a_4_3·a_1_2
  82. a_6_3·b_5_7 + a_4_3·b_7_12 + a_4_3·b_4_6·a_3_4 + b_2_32·a_4_3·a_3_4
       + b_2_33·a_4_3·a_1_2
  83. b_6_10·b_5_7 + b_4_6·b_7_12 + a_6_3·b_5_7 + b_4_62·a_3_3 + b_2_32·b_4_6·a_3_4
       + b_2_32·a_4_3·a_3_4
  84. b_4_5·b_7_12 + b_2_3·b_4_6·b_5_7 + b_2_32·b_7_12 + a_6_3·b_5_7 + b_2_3·a_4_3·b_5_7
       + b_2_33·b_4_6·a_1_2 + a_4_3·b_4_6·a_3_4 + b_2_33·a_4_3·a_1_2
  85. b_8_14·a_3_3 + b_4_62·a_3_3 + b_2_3·a_4_3·b_5_7 + b_2_32·b_4_6·a_3_4
       + b_2_33·b_4_6·a_1_2 + a_4_3·b_4_6·a_3_4
  86. b_8_14·a_3_4 + a_6_3·b_5_7 + b_4_62·a_3_4 + b_2_3·b_4_62·a_1_2 + b_2_3·a_4_3·b_5_7
       + b_2_32·b_4_6·a_3_4 + b_2_33·b_4_6·a_1_2 + a_4_3·b_4_6·a_3_4
  87. b_4_5·b_7_10 + b_2_3·b_9_18 + b_2_32·b_7_12 + b_2_33·b_5_7 + a_6_3·b_5_7
       + b_2_3·a_4_3·b_5_7 + b_2_32·b_4_6·a_3_4 + b_2_33·b_4_6·a_1_2 + b_2_35·a_1_0
       + b_2_33·a_4_3·a_1_2 + b_2_3·c_8_15·a_1_2
  88. b_10_22·a_1_1 + b_2_35·a_1_0 + b_2_32·a_4_3·a_3_4 + b_2_3·c_8_15·a_1_1
  89. b_10_22·a_1_0 + b_4_62·a_3_3 + b_2_3·b_4_62·a_1_2 + b_2_32·a_4_3·a_3_4
       + b_2_33·a_4_3·a_1_2 + b_2_3·c_8_15·a_1_0
  90. b_10_22·a_1_2 + a_6_3·b_5_7 + b_4_62·a_3_4 + b_4_62·a_3_3 + b_2_32·b_4_6·a_3_4
       + b_2_33·b_4_6·a_1_2 + b_2_34·a_3_4 + b_2_35·a_1_2 + a_4_3·b_4_6·a_3_4
       + b_2_3·c_8_15·a_1_2
  91. a_6_32
  92. a_6_3·a_6_5
  93. a_6_52
  94. a_6_3·a_6_6
  95. a_6_62
  96. a_6_5·a_6_6
  97. b_6_102 + b_4_63 + a_4_3·b_4_62 + b_4_62·a_1_0·a_3_3
  98. a_6_3·b_6_10 + a_4_3·b_4_62 + b_4_62·a_1_0·a_3_3
  99. a_6_5·b_6_10 + b_2_3·b_4_6·a_1_2·b_5_7 + b_2_3·a_4_3·b_6_10 + b_2_32·a_1_2·b_7_10
       + b_2_32·a_4_3·b_4_6 + b_2_33·a_1_2·b_5_7 + b_2_33·a_6_5 + b_2_33·a_6_3
       + b_2_34·a_4_3 + b_4_62·a_1_0·a_3_3
  100. a_6_6·b_6_10 + b_4_6·a_1_0·b_7_12 + a_4_3·b_4_62 + b_2_3·b_4_6·a_1_2·b_5_7
       + b_2_3·a_4_3·b_6_10 + b_4_62·a_1_0·a_3_3
  101. b_5_7·b_7_12 + b_2_3·b_4_6·b_6_10 + b_2_33·b_6_10 + a_6_6·b_6_10 + a_6_5·b_6_10
       + b_4_6·a_1_2·b_7_10 + b_2_33·a_6_5 + b_2_34·a_4_3 + c_8_15·a_1_0·a_3_3
       + b_2_3·c_8_15·a_1_0·a_1_1 + b_2_3·c_8_15·a_1_02
  102. a_6_5·b_6_10 + a_4_3·b_8_14 + a_4_3·b_4_62 + b_2_33·a_1_2·b_5_7 + b_2_33·a_6_5
       + b_2_34·a_4_3 + b_4_62·a_1_0·a_3_3
  103. b_5_7·b_7_12 + b_5_7·b_7_10 + b_4_6·b_8_14 + b_4_63 + b_4_5·b_8_14 + b_2_32·b_8_14
       + b_2_32·b_4_62 + a_6_5·b_6_10 + b_4_6·a_1_2·b_7_10 + a_4_3·b_4_62
       + b_2_3·b_4_6·a_1_2·b_5_7 + b_2_32·a_4_3·b_4_6 + b_2_33·a_1_2·b_5_7 + b_2_33·a_6_5
       + b_2_34·a_4_3 + b_4_62·a_1_0·a_3_3
  104. b_5_7·b_7_12 + b_2_3·b_4_6·b_6_10 + b_2_33·b_6_10 + a_3_3·b_9_18 + a_6_6·b_6_10
       + a_6_5·b_6_10 + b_4_6·a_1_2·b_7_10 + b_2_3·b_4_6·a_1_2·b_5_7 + b_2_3·a_4_3·b_6_10
       + b_2_33·a_1_2·b_5_7 + b_2_33·a_6_5 + b_2_33·a_6_3 + b_2_34·a_4_3
       + b_4_62·a_1_0·a_3_3 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_0·a_1_1
  105. a_3_4·b_9_18 + a_6_5·b_6_10 + b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_6_10
       + b_2_32·a_4_3·b_4_6 + b_2_33·a_6_5 + b_2_33·a_6_3 + b_2_34·a_4_3
       + b_4_62·a_1_0·a_3_3 + c_8_15·a_1_0·a_3_3 + b_2_3·c_8_15·a_1_0·a_1_1
  106. b_5_7·b_7_12 + b_5_7·b_7_10 + b_4_6·b_8_14 + b_4_63 + b_2_3·b_10_22 + b_2_33·b_6_10
       + b_2_34·b_4_5 + b_2_36 + a_6_6·b_6_10 + b_4_6·a_1_2·b_7_10 + a_4_3·b_4_62
       + b_2_3·b_4_6·a_1_2·b_5_7 + b_2_3·a_4_3·b_6_10 + b_2_33·a_1_2·b_5_7 + b_2_33·a_6_6
       + b_2_33·a_6_5 + b_4_62·a_1_0·a_3_3 + b_2_32·c_8_15 + b_2_3·c_8_15·a_1_0·a_1_1
  107. a_6_3·b_7_10 + a_4_3·b_4_6·b_5_7 + b_2_3·b_4_62·a_3_4 + b_2_32·b_4_62·a_1_2
       + b_2_33·b_4_6·a_3_4 + b_2_34·b_4_6·a_1_2 + a_4_3·b_4_62·a_1_2
  108. a_6_6·b_7_10 + a_4_3·b_4_6·b_5_7 + b_2_3·b_4_62·a_3_4 + b_2_32·b_4_62·a_1_2
       + b_2_32·a_4_3·b_5_7 + b_2_33·b_4_6·a_3_4 + b_2_34·b_4_6·a_1_2 + b_2_33·a_4_3·a_3_4
       + b_2_34·a_4_3·a_1_2
  109. a_6_5·b_7_10 + b_2_33·b_4_6·a_3_4 + b_2_36·a_1_0 + b_2_34·a_4_3·a_1_2
  110. b_6_10·b_7_12 + b_4_62·b_5_7 + b_4_63·a_1_0 + b_2_3·b_4_62·a_3_4
       + b_2_33·b_4_6·a_3_4 + b_2_34·b_4_6·a_1_2 + b_2_36·a_1_0
  111. a_6_3·b_7_12 + a_4_3·b_4_6·b_5_7 + a_4_3·b_4_62·a_1_2
  112. a_6_6·b_7_12 + a_4_3·b_4_6·b_5_7 + b_2_3·a_4_3·b_7_10 + b_2_33·a_4_3·a_3_4
  113. a_6_5·b_7_12 + b_2_3·a_4_3·b_7_10 + b_2_33·b_4_6·a_3_4 + b_2_36·a_1_0
       + a_4_3·b_4_62·a_1_2 + b_2_34·a_4_3·a_1_2
  114. b_8_14·b_5_7 + b_4_62·b_5_7 + b_2_3·b_4_6·b_7_10 + b_2_32·b_9_18 + b_2_32·b_4_6·b_5_7
       + b_2_33·b_7_12 + b_2_33·b_7_10 + b_2_34·b_5_7 + b_2_3·b_4_62·a_3_4
       + b_2_3·a_4_3·b_7_10 + b_2_32·b_4_62·a_1_2 + b_2_33·b_4_6·a_3_4
       + a_4_3·b_4_62·a_1_2 + b_2_34·a_4_3·a_1_2 + b_2_32·c_8_15·a_1_2 + a_4_3·c_8_15·a_1_2
  115. a_4_3·b_9_18 + a_4_3·b_4_6·b_5_7 + b_2_3·b_4_62·a_3_4 + b_2_32·a_4_3·b_5_7
       + b_2_33·b_4_6·a_3_4 + b_2_33·a_4_3·a_3_4 + a_4_3·c_8_15·a_1_2
  116. b_6_10·b_7_10 + b_4_6·b_9_18 + b_2_3·b_4_6·b_7_12 + b_2_3·b_4_6·b_7_10
       + b_2_32·b_4_6·b_5_7 + b_4_63·a_1_2 + a_4_3·b_4_6·b_5_7 + b_2_3·b_4_62·a_3_4
       + b_2_3·a_4_3·b_7_10 + b_2_32·b_4_62·a_1_2 + b_2_34·b_4_6·a_1_2 + b_2_36·a_1_0
       + b_2_34·a_4_3·a_1_2 + b_4_6·c_8_15·a_1_2
  117. b_4_5·b_9_18 + b_2_3·b_4_6·b_7_10 + b_2_32·b_4_6·b_5_7 + b_2_33·b_7_10 + b_2_34·b_5_7
       + a_4_3·b_4_6·b_5_7 + b_2_32·a_4_3·b_5_7 + b_2_33·b_4_6·a_3_4 + b_2_34·b_4_6·a_1_2
       + b_2_35·a_3_4 + b_2_36·a_1_2 + b_2_36·a_1_1 + b_2_36·a_1_0 + b_2_33·a_4_3·a_3_4
       + b_2_34·a_4_3·a_1_2 + b_2_3·c_8_15·a_3_4 + b_2_32·c_8_15·a_1_0
  118. b_10_22·a_3_3 + b_4_63·a_1_0 + b_2_3·b_4_62·a_3_4 + b_2_3·a_4_3·b_7_10
       + b_2_33·b_4_6·a_3_4 + b_2_35·a_3_4 + b_2_36·a_1_2 + b_2_36·a_1_0
       + a_4_3·b_4_62·a_1_2 + b_2_33·a_4_3·a_3_4 + b_2_32·c_8_15·a_1_2
       + b_2_32·c_8_15·a_1_0 + a_4_3·c_8_15·a_1_2
  119. b_10_22·a_3_4 + b_4_63·a_1_2 + b_4_63·a_1_0 + a_4_3·b_4_6·b_5_7 + b_2_3·b_4_62·a_3_4
       + b_2_3·a_4_3·b_7_10 + b_2_32·b_4_62·a_1_2 + b_2_33·b_4_6·a_3_4
       + b_2_34·b_4_6·a_1_2 + b_2_35·a_3_4 + b_2_36·a_1_2 + b_2_36·a_1_0
       + b_2_3·c_8_15·a_3_4
  120. b_7_122 + b_7_102 + b_2_3·b_4_63 + b_2_32·b_4_6·b_6_10 + b_2_33·b_4_62
       + b_2_34·b_6_10 + b_4_62·a_1_2·b_5_7 + b_2_32·a_4_3·b_6_10 + b_2_33·a_4_3·b_4_6
       + b_2_34·a_1_2·b_5_7 + b_4_63·a_1_02
  121. b_7_102 + b_2_32·b_4_6·b_6_10 + b_2_34·b_6_10 + b_2_3·b_4_6·a_1_2·b_7_10
       + b_2_33·a_4_3·b_4_6 + b_2_34·a_1_2·b_5_7 + b_4_6·c_8_15·a_1_02
  122. a_6_3·b_8_14 + a_4_3·b_4_6·b_6_10 + b_2_3·b_4_6·a_1_2·b_7_10
       + b_2_32·b_4_6·a_1_2·b_5_7 + b_2_32·a_4_3·b_6_10 + b_4_63·a_1_02
  123. b_7_10·b_7_12 + b_7_102 + b_6_10·b_8_14 + b_4_62·b_6_10 + b_2_3·b_4_6·b_8_14
       + b_2_3·b_4_63 + b_2_33·b_4_62 + b_2_34·b_6_10 + a_4_3·b_4_6·b_6_10
       + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_4_62 + b_2_32·b_4_6·a_1_2·b_5_7
       + b_2_33·a_1_2·b_7_10 + b_2_34·a_1_2·b_5_7 + b_2_34·a_6_3 + b_4_63·a_1_02
  124. a_6_6·b_8_14 + b_4_62·a_6_6 + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_32·b_4_6·a_1_2·b_5_7
       + b_2_32·a_4_3·b_6_10 + b_2_33·a_1_2·b_7_10 + b_2_33·a_4_3·b_4_6
  125. a_6_5·b_8_14 + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_32·b_4_6·a_1_2·b_5_7
       + b_2_32·a_4_3·b_6_10 + b_2_33·a_1_2·b_7_10 + b_2_34·a_6_3 + b_4_63·a_1_02
  126. b_7_102 + b_5_7·b_9_18 + b_6_10·b_8_14 + b_4_62·b_6_10 + b_2_32·b_10_22
       + b_2_35·b_4_6 + b_2_35·b_4_5 + b_2_37 + b_4_62·a_1_2·b_5_7 + a_4_3·b_4_6·b_6_10
       + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_4_62 + b_2_33·a_4_3·b_4_6 + b_2_34·a_6_6
       + b_2_34·a_6_5 + b_2_35·a_4_3 + b_2_33·c_8_15 + c_8_15·a_1_2·b_5_7
  127. a_4_3·b_10_22 + a_4_3·b_4_6·b_6_10 + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_4_62
       + b_2_32·b_4_6·a_1_2·b_5_7 + b_2_34·a_6_3 + b_2_3·a_4_3·c_8_15
  128. b_6_10·b_8_14 + b_4_6·b_10_22 + b_2_3·b_4_63 + b_2_32·b_4_6·b_6_10 + b_2_34·b_6_10
       + b_4_62·a_6_6 + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_4_62 + b_2_34·a_6_5
       + b_2_34·a_6_3 + b_2_35·a_4_3 + b_2_3·b_4_6·c_8_15
  129. b_7_10·b_7_12 + b_5_7·b_9_18 + b_4_5·b_10_22 + b_2_3·b_4_63 + b_2_32·b_4_6·b_6_10
       + b_2_34·b_6_10 + b_2_35·b_4_5 + b_2_37 + b_4_62·a_1_2·b_5_7 + b_4_62·a_6_6
       + b_2_3·b_4_6·a_1_2·b_7_10 + b_2_3·a_4_3·b_4_62 + b_2_32·a_4_3·b_6_10
       + b_2_33·a_4_3·b_4_6 + b_2_34·a_1_2·b_5_7 + b_2_34·a_6_6 + b_2_35·a_4_3
       + b_2_3·b_4_5·c_8_15 + c_8_15·a_1_2·b_5_7
  130. b_8_14·b_7_10 + b_4_62·b_7_10 + b_2_32·b_4_6·b_7_12 + b_2_32·b_4_6·b_7_10
       + b_2_33·b_4_6·b_5_7 + a_4_3·b_4_6·b_7_10 + b_2_3·a_4_3·b_4_6·b_5_7
       + b_2_32·b_4_62·a_3_4 + b_2_32·a_4_3·b_7_10 + b_2_33·a_4_3·b_5_7
       + b_2_34·b_4_6·a_3_4 + b_2_35·b_4_6·a_1_2 + a_4_3·c_8_15·a_3_4
       + b_2_3·a_4_3·c_8_15·a_1_2
  131. b_8_14·b_7_12 + b_6_10·b_9_18 + b_4_62·b_7_12 + b_4_62·b_7_10 + b_2_3·b_4_62·b_5_7
       + b_2_32·b_4_6·b_7_10 + b_4_63·a_3_4 + b_4_63·a_3_3 + b_2_3·b_4_63·a_1_2
       + b_2_32·a_4_3·b_7_10 + b_2_35·b_4_6·a_1_2 + a_4_3·b_4_62·a_3_4
       + b_2_35·a_4_3·a_1_2 + b_4_6·c_8_15·a_3_4 + b_4_6·c_8_15·a_3_3 + a_6_5·c_8_15·a_1_0
       + a_4_3·c_8_15·a_3_4 + b_2_3·a_4_3·c_8_15·a_1_2
  132. a_6_3·b_9_18 + a_4_3·b_4_6·b_7_10 + b_2_32·b_4_62·a_3_4 + b_2_32·a_4_3·b_7_10
       + b_2_34·b_4_6·a_3_4 + a_4_3·b_4_62·a_3_4 + b_2_34·a_4_3·a_3_4 + a_4_3·c_8_15·a_3_4
       + b_2_3·a_4_3·c_8_15·a_1_2
  133. b_8_14·b_7_12 + b_4_62·b_7_12 + b_2_3·b_4_6·b_9_18 + b_2_33·b_4_6·b_5_7
       + b_2_32·b_4_62·a_3_4 + b_2_32·a_4_3·b_7_10 + b_2_33·b_4_62·a_1_2 + b_2_37·a_1_0
       + a_4_3·b_4_62·a_3_4 + b_2_34·a_4_3·a_3_4 + b_2_35·a_4_3·a_1_2
       + b_2_3·b_4_6·c_8_15·a_1_2 + a_4_3·c_8_15·a_3_4 + b_2_3·a_4_3·c_8_15·a_1_2
  134. a_6_6·b_9_18 + a_4_3·b_4_6·b_7_10 + b_2_32·b_4_62·a_3_4 + b_2_32·a_4_3·b_7_10
       + b_2_33·b_4_62·a_1_2 + b_2_36·a_3_4 + b_2_37·a_1_2 + a_4_3·c_8_15·a_3_4
  135. a_6_5·b_9_18 + b_2_32·a_4_3·b_7_10 + b_2_33·b_4_62·a_1_2 + b_2_33·a_4_3·b_5_7
       + b_2_35·b_4_6·a_1_2 + b_2_35·a_4_3·a_1_2 + b_2_3·a_4_3·c_8_15·a_1_2
  136. b_10_22·b_5_7 + b_8_14·b_7_12 + b_2_3·b_4_62·b_5_7 + b_2_32·b_4_6·b_7_12
       + b_2_34·b_7_12 + b_4_63·a_3_3 + b_2_3·a_4_3·b_4_6·b_5_7 + b_2_32·b_4_62·a_3_4
       + b_2_32·a_4_3·b_7_10 + b_2_33·a_4_3·b_5_7 + b_2_34·b_4_6·a_3_4
       + b_2_35·b_4_6·a_1_2 + b_2_37·a_1_1 + a_4_3·b_4_62·a_3_4 + b_2_3·c_8_15·b_5_7
  137. b_8_142 + b_4_64 + b_2_33·b_4_6·b_6_10 + b_2_34·b_4_62 + b_2_35·b_6_10
       + b_2_32·a_4_3·b_4_62 + b_2_33·b_4_6·a_1_2·b_5_7 + b_2_33·a_4_3·b_6_10
       + b_2_34·a_4_3·b_4_6 + b_2_35·a_1_2·b_5_7
  138. b_7_12·b_9_18 + b_4_62·b_8_14 + b_4_64 + b_2_32·b_4_6·b_8_14 + b_2_32·b_4_63
       + b_2_33·b_4_6·b_6_10 + b_2_35·b_6_10 + b_4_62·a_1_2·b_7_10
       + b_2_3·b_4_62·a_1_2·b_5_7 + b_2_3·a_4_3·b_4_6·b_6_10 + b_2_32·b_4_6·a_1_2·b_7_10
       + b_2_32·a_4_3·b_4_62 + b_2_33·a_4_3·b_6_10 + b_2_34·a_4_3·b_4_6
       + b_2_35·a_1_2·b_5_7 + c_8_15·a_1_2·b_7_10 + a_4_3·b_4_6·c_8_15 + b_2_3·a_6_3·c_8_15
  139. b_6_10·b_10_22 + b_4_62·b_8_14 + b_2_3·b_4_62·b_6_10 + b_2_32·b_4_63
       + b_2_34·b_4_62 + b_4_62·a_1_0·b_7_12 + b_2_3·b_4_62·a_1_2·b_5_7
       + b_2_32·b_4_6·a_1_2·b_7_10 + b_2_32·a_4_3·b_4_62 + b_2_33·a_4_3·b_6_10
       + b_2_35·a_1_2·b_5_7 + b_2_35·a_6_5 + b_2_36·a_4_3 + b_2_3·b_6_10·c_8_15
  140. a_6_3·b_10_22 + a_4_3·b_4_63 + b_2_3·b_4_62·a_1_2·b_5_7
       + b_2_32·b_4_6·a_1_2·b_7_10 + b_2_33·a_4_3·b_6_10 + b_2_34·a_4_3·b_4_6
       + b_4_63·a_1_0·a_3_3 + b_2_3·a_6_3·c_8_15
  141. b_7_10·b_9_18 + b_2_3·b_4_6·b_10_22 + b_2_3·b_4_62·b_6_10 + b_2_33·b_10_22
       + b_2_36·b_4_5 + b_2_38 + b_4_62·a_1_2·b_7_10 + b_2_3·b_4_62·a_1_2·b_5_7
       + b_2_3·a_4_3·b_4_6·b_6_10 + b_2_32·b_4_6·a_1_2·b_7_10 + b_2_34·a_4_3·b_4_6
       + b_2_35·a_1_2·b_5_7 + b_2_35·a_6_6 + b_2_35·a_6_3 + b_2_36·a_4_3
       + b_2_32·b_4_6·c_8_15 + b_2_34·c_8_15 + c_8_15·a_1_2·b_7_10
       + b_4_6·c_8_15·a_1_0·a_3_3
  142. a_6_6·b_10_22 + b_4_62·a_1_0·b_7_12 + a_4_3·b_4_63 + b_2_3·a_4_3·b_4_6·b_6_10
       + b_2_33·a_4_3·b_6_10 + b_2_35·a_1_2·b_5_7 + b_2_35·a_6_3 + b_4_63·a_1_0·a_3_3
       + b_2_3·a_6_6·c_8_15
  143. a_6_5·b_10_22 + b_2_3·b_4_62·a_1_2·b_5_7 + b_2_3·a_4_3·b_4_6·b_6_10
       + b_2_32·a_4_3·b_4_62 + b_2_33·b_4_6·a_1_2·b_5_7 + b_2_35·a_1_2·b_5_7
       + b_2_35·a_6_5 + b_2_35·a_6_3 + b_2_36·a_4_3 + b_4_63·a_1_0·a_3_3
       + b_2_3·a_6_5·c_8_15
  144. b_8_14·b_9_18 + b_4_62·b_9_18 + b_2_32·b_4_62·b_5_7 + b_2_33·b_4_6·b_7_12
       + b_2_33·b_4_6·b_7_10 + b_2_34·b_9_18 + b_2_35·b_7_12 + b_2_35·b_7_10 + b_2_36·b_5_7
       + b_2_32·b_4_63·a_1_2 + b_2_32·a_4_3·b_4_6·b_5_7 + b_2_33·b_4_62·a_3_4
       + b_2_34·a_4_3·b_5_7 + b_2_35·b_4_6·a_3_4 + b_2_36·b_4_6·a_1_2 + a_4_3·b_4_63·a_1_2
       + a_4_3·c_8_15·b_5_7 + b_2_3·b_4_6·c_8_15·a_3_4 + b_2_32·b_4_6·c_8_15·a_1_2
       + b_2_34·c_8_15·a_1_2 + b_2_34·c_8_15·a_1_0 + a_4_3·b_4_6·c_8_15·a_1_2
       + b_2_32·a_4_3·c_8_15·a_1_2
  145. b_10_22·b_7_12 + b_4_63·b_5_7 + b_2_3·b_4_62·b_7_12 + b_2_3·b_4_62·b_7_10
       + b_2_32·b_4_6·b_9_18 + b_2_33·b_4_6·b_7_12 + b_2_33·b_4_6·b_7_10 + b_4_64·a_1_0
       + a_4_3·b_4_62·b_5_7 + b_2_3·a_4_3·b_4_6·b_7_10 + b_2_33·a_4_3·b_7_10
       + b_2_34·a_4_3·b_5_7 + b_2_36·b_4_6·a_1_2 + b_2_38·a_1_0 + b_2_35·a_4_3·a_3_4
       + b_2_36·a_4_3·a_1_2 + b_2_3·c_8_15·b_7_12 + b_2_32·b_4_6·c_8_15·a_1_2
       + a_4_3·b_4_6·c_8_15·a_1_2
  146. b_10_22·b_7_10 + b_8_14·b_9_18 + b_2_3·b_4_62·b_7_12 + b_2_32·b_4_62·b_5_7
       + b_2_33·b_4_6·b_7_10 + b_4_64·a_1_2 + a_4_3·b_4_62·b_5_7 + b_2_3·b_4_63·a_3_4
       + b_2_3·a_4_3·b_4_6·b_7_10 + b_2_32·a_4_3·b_4_6·b_5_7 + b_2_33·b_4_62·a_3_4
       + b_2_34·a_4_3·b_5_7 + b_2_35·b_4_6·a_3_4 + b_2_38·a_1_0 + b_2_35·a_4_3·a_3_4
       + b_2_36·a_4_3·a_1_2 + b_2_3·c_8_15·b_7_10 + b_4_62·c_8_15·a_1_2 + a_4_3·c_8_15·b_5_7
       + b_2_3·b_4_6·c_8_15·a_3_4 + b_2_32·b_4_6·c_8_15·a_1_2 + b_2_34·c_8_15·a_1_0
       + b_2_32·a_4_3·c_8_15·a_1_2
  147. b_9_182 + b_2_32·b_4_62·b_6_10 + b_2_33·b_4_63 + b_2_36·b_6_10 + b_2_37·b_4_6
       + b_2_3·b_4_62·a_1_2·b_7_10 + b_2_32·b_4_62·a_1_2·b_5_7
       + b_2_32·a_4_3·b_4_6·b_6_10 + b_2_33·a_4_3·b_4_62 + b_2_35·a_1_2·b_7_10
       + b_2_36·a_1_2·b_5_7 + b_2_36·a_6_3 + b_2_37·a_4_3 + b_4_64·a_1_02
       + b_4_62·c_8_15·a_1_02 + c_8_152·a_1_0·a_1_2 + c_8_152·a_1_0·a_1_1
       + c_8_152·a_1_02
  148. b_8_14·b_10_22 + b_4_63·b_6_10 + b_2_3·b_4_62·b_8_14 + b_2_32·b_4_6·b_10_22
       + b_2_34·b_10_22 + b_2_37·b_4_5 + b_2_39 + b_4_63·a_6_6 + b_2_3·a_4_3·b_4_63
       + b_2_33·b_4_6·a_1_2·b_7_10 + b_2_33·a_4_3·b_4_62 + b_2_34·b_4_6·a_1_2·b_5_7
       + b_2_34·a_4_3·b_6_10 + b_2_35·a_1_2·b_7_10 + b_2_36·a_1_2·b_5_7 + b_2_36·a_6_6
       + b_2_36·a_6_3 + b_2_37·a_4_3 + b_2_3·b_8_14·c_8_15 + b_2_33·b_4_6·c_8_15
       + b_2_35·c_8_15
  149. b_10_22·b_9_18 + b_4_63·b_7_10 + b_2_3·b_4_63·b_5_7 + b_2_32·b_4_62·b_7_12
       + b_2_33·b_4_62·b_5_7 + b_2_34·b_4_6·b_7_12 + b_2_35·b_9_18 + b_2_35·b_4_6·b_5_7
       + b_2_36·b_7_10 + b_2_37·b_5_7 + b_4_64·a_3_4 + b_4_64·a_3_3 + a_4_3·b_4_62·b_7_10
       + b_2_3·b_4_64·a_1_2 + b_2_3·a_4_3·b_4_62·b_5_7 + b_2_32·b_4_63·a_3_4
       + b_2_33·b_4_63·a_1_2 + b_2_35·b_4_62·a_1_2 + b_2_39·a_1_1 + a_4_3·b_4_63·a_3_4
       + b_2_36·a_4_3·a_3_4 + b_2_37·a_4_3·a_1_2 + b_2_3·c_8_15·b_9_18
       + b_4_62·c_8_15·a_3_4 + b_4_62·c_8_15·a_3_3 + a_4_3·c_8_15·b_7_10
       + b_2_3·b_4_62·c_8_15·a_1_2 + b_2_32·b_4_6·c_8_15·a_3_4 + b_2_34·c_8_15·a_3_4
       + a_4_3·b_4_6·c_8_15·a_3_4 + b_2_33·a_4_3·c_8_15·a_1_2
  150. b_10_222 + b_4_65 + b_2_32·b_4_64 + b_2_33·b_4_62·b_6_10 + b_2_35·b_4_6·b_6_10
       + b_2_38·b_4_6 + a_4_3·b_4_64 + b_2_32·a_4_3·b_4_63 + b_2_33·b_4_62·a_1_2·b_5_7
       + b_2_34·a_4_3·b_4_62 + b_2_35·b_4_6·a_1_2·b_5_7 + b_2_35·a_4_3·b_6_10
       + b_2_38·a_4_3 + b_4_64·a_1_0·a_3_3 + b_2_32·c_8_152


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 20.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_15, a Duflot regular element of degree 8
    2. b_4_6 + b_4_5, an element of degree 4
    3. b_2_3, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 11].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_30, an element of degree 2
  5. a_3_30, an element of degree 3
  6. a_3_40, an element of degree 3
  7. a_4_30, an element of degree 4
  8. b_4_50, an element of degree 4
  9. b_4_60, an element of degree 4
  10. b_5_70, an element of degree 5
  11. a_6_30, an element of degree 6
  12. a_6_50, an element of degree 6
  13. a_6_60, an element of degree 6
  14. b_6_100, an element of degree 6
  15. b_7_100, an element of degree 7
  16. b_7_120, an element of degree 7
  17. b_8_140, an element of degree 8
  18. c_8_15c_1_08, an element of degree 8
  19. b_9_180, an element of degree 9
  20. b_10_220, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_3c_1_22, an element of degree 2
  5. a_3_30, an element of degree 3
  6. a_3_40, an element of degree 3
  7. a_4_30, an element of degree 4
  8. b_4_5c_1_24 + c_1_12·c_1_22, an element of degree 4
  9. b_4_6c_1_14, an element of degree 4
  10. b_5_7c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  11. a_6_30, an element of degree 6
  12. a_6_50, an element of degree 6
  13. a_6_60, an element of degree 6
  14. b_6_10c_1_16, an element of degree 6
  15. b_7_10c_1_13·c_1_24 + c_1_15·c_1_22, an element of degree 7
  16. b_7_12c_1_14·c_1_23 + c_1_16·c_1_2, an element of degree 7
  17. b_8_14c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23 + c_1_18, an element of degree 8
  18. c_8_15c_1_28 + c_1_12·c_1_26 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  19. b_9_18c_1_12·c_1_27 + c_1_13·c_1_26 + c_1_16·c_1_23 + c_1_17·c_1_22, an element of degree 9
  20. b_10_22c_1_210 + c_1_15·c_1_25 + c_1_17·c_1_23 + c_1_18·c_1_22 + c_1_110
       + c_1_02·c_1_12·c_1_26 + c_1_02·c_1_14·c_1_24 + c_1_04·c_1_26
       + c_1_04·c_1_12·c_1_24 + c_1_04·c_1_14·c_1_22 + c_1_08·c_1_22, an element of degree 10


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009