Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 846 of order 128
General information on the group
- The group has 3 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t4 − t3 + t2 − t + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-6,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- c_1_2, a Duflot regular element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- a_3_9, a nilpotent element of degree 3
- a_4_13, a nilpotent element of degree 4
- a_5_19, a nilpotent element of degree 5
- b_5_21, an element of degree 5
- a_6_29, a nilpotent element of degree 6
- a_7_41, a nilpotent element of degree 7
- a_8_48, a nilpotent element of degree 8
- c_8_55, a Duflot regular element of degree 8
Ring relations
There are 52 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·b_1_1
- a_2_4·a_1_0
- b_2_5·a_1_0 + a_2_4·b_1_1
- a_2_42
- a_1_0·a_3_9
- b_1_1·a_3_9 + a_2_4·b_2_5
- a_2_4·b_2_5·b_1_1
- a_2_4·a_3_9
- a_4_13·a_1_0
- a_3_92
- a_2_4·a_4_13
- a_1_0·a_5_19
- b_1_1·a_5_19
- a_1_0·b_5_21
- a_4_13·a_3_9
- a_2_4·a_5_19
- b_2_5·a_5_19 + a_2_4·b_5_21
- a_6_29·a_1_0
- a_6_29·b_1_1 + b_2_5·a_5_19
- a_4_132
- a_3_9·a_5_19
- a_3_9·b_5_21 + b_2_5·a_6_29 + a_2_4·b_2_53
- a_2_4·a_6_29
- a_1_0·a_7_41
- a_3_9·b_5_21 + b_1_1·a_7_41 + b_2_52·a_4_13 + a_2_4·b_2_53
- a_4_13·a_5_19
- a_6_29·a_3_9
- a_2_4·a_7_41
- a_8_48·a_1_0
- a_8_48·b_1_1 + a_4_13·b_5_21 + b_2_53·a_3_9
- a_5_192
- a_5_19·b_5_21 + a_2_4·b_2_54
- a_4_13·a_6_29
- a_3_9·a_7_41
- b_5_212 + b_1_15·b_5_21 + b_2_52·b_1_1·b_5_21 + b_2_52·b_1_16 + b_2_53·b_1_14
+ b_2_54·b_1_12 + b_2_55 + a_4_13·b_1_1·b_5_21 + b_2_5·a_4_13·b_1_14 + a_2_4·b_2_54 + c_8_55·b_1_12
- a_2_4·a_8_48
- a_6_29·a_5_19
- a_4_13·a_7_41
- a_6_29·b_5_21 + b_2_54·a_3_9 + a_2_4·c_8_55·b_1_1
- a_8_48·a_3_9
- a_6_292
- a_5_19·a_7_41
- b_5_21·a_7_41 + b_2_52·a_8_48 + a_2_4·b_2_55 + a_2_4·b_2_5·c_8_55
- a_4_13·a_8_48
- a_6_29·a_7_41
- a_8_48·b_5_21 + a_4_13·b_1_14·b_5_21 + b_2_52·a_4_13·b_5_21
+ b_2_52·a_4_13·b_1_15 + b_2_53·a_7_41 + b_2_53·a_4_13·b_1_13 + b_2_54·a_4_13·b_1_1 + b_2_55·a_3_9 + a_4_13·c_8_55·b_1_1
- a_8_48·a_5_19
- a_7_412
- a_6_29·a_8_48
- a_8_48·a_7_41
- a_8_482
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_2, a Duflot regular element of degree 1
- c_8_55, a Duflot regular element of degree 8
- b_1_12 + b_2_5, an element of degree 2
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 7, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_9 → 0, an element of degree 3
- a_4_13 → 0, an element of degree 4
- a_5_19 → 0, an element of degree 5
- b_5_21 → 0, an element of degree 5
- a_6_29 → 0, an element of degree 6
- a_7_41 → 0, an element of degree 7
- a_8_48 → 0, an element of degree 8
- c_8_55 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- a_3_9 → 0, an element of degree 3
- a_4_13 → 0, an element of degree 4
- a_5_19 → 0, an element of degree 5
- b_5_21 → c_1_35 + c_1_22·c_1_33 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_29 → 0, an element of degree 6
- a_7_41 → 0, an element of degree 7
- a_8_48 → 0, an element of degree 8
- c_8_55 → c_1_38 + c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_26·c_1_32
+ c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_26 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_18, an element of degree 8
|