Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 851 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t6 + t3 + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- c_1_2, a Duflot regular element of degree 1
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_3_10, an element of degree 3
- b_4_15, an element of degree 4
- b_4_17, an element of degree 4
- a_5_21, a nilpotent element of degree 5
- b_5_24, an element of degree 5
- b_5_25, an element of degree 5
- b_6_37, an element of degree 6
- b_6_38, an element of degree 6
- b_7_52, an element of degree 7
- b_7_53, an element of degree 7
- b_8_68, an element of degree 8
- c_8_72, a Duflot regular element of degree 8
- b_9_95, an element of degree 9
Ring relations
There are 134 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·a_1_1
- a_1_13
- b_2_4·a_1_1
- b_2_5·a_1_0
- b_2_4·b_2_5
- a_1_0·b_3_8
- a_1_1·b_3_9 + a_1_1·b_3_8
- a_1_0·b_3_9
- a_1_0·b_3_10 + b_2_5·a_1_12
- a_1_12·b_3_8
- b_2_4·b_3_8
- b_2_5·b_3_9 + b_2_5·b_3_8 + b_2_52·a_1_1
- a_1_12·b_3_10
- b_2_4·b_3_10 + b_2_4·b_3_9
- b_4_15·a_1_1
- b_4_15·a_1_0
- b_4_17·a_1_0
- b_3_8·b_3_9 + b_3_82 + b_2_5·a_1_1·b_3_8
- b_3_9·b_3_10 + b_3_92 + b_3_8·b_3_10 + b_2_53 + b_2_5·a_1_1·b_3_10 + b_2_5·a_1_1·b_3_8
- b_2_5·b_4_15
- b_3_82 + b_2_53 + b_2_5·a_1_1·b_3_8 + b_4_17·a_1_12
- b_3_92 + b_3_82 + b_2_4·b_4_17
- b_3_82 + b_2_53 + b_2_5·a_1_1·b_3_8 + a_1_1·a_5_21
- a_1_0·a_5_21
- b_3_82 + b_2_53 + a_1_1·b_5_24 + b_2_5·a_1_1·b_3_8
- a_1_0·b_5_24
- b_3_102 + b_3_92 + b_3_82 + b_2_5·b_4_17 + a_1_1·b_5_25
- a_1_0·b_5_25
- b_4_15·b_3_8
- b_4_15·b_3_10 + b_4_15·b_3_9
- a_1_1·b_3_8·b_3_10 + b_2_5·a_5_21 + b_2_5·b_4_17·a_1_1
- b_2_5·b_5_24 + b_2_5·b_4_17·a_1_1 + b_2_53·a_1_1
- b_4_15·b_3_10 + b_2_4·b_5_24 + b_2_4·a_5_21
- a_1_12·b_5_25
- b_2_4·b_5_25
- a_1_1·b_3_8·b_3_10 + b_6_37·a_1_1 + b_2_53·a_1_1
- b_6_37·a_1_0 + b_2_4·a_5_21
- b_4_17·b_3_8 + b_2_5·b_5_25 + a_1_1·b_3_8·b_3_10 + b_6_38·a_1_1 + b_2_5·b_4_17·a_1_1
- b_6_38·a_1_0
- b_4_152 + b_2_42·b_4_17
- b_3_9·a_5_21 + b_3_8·a_5_21
- b_3_10·b_5_24 + b_4_15·b_4_17 + b_3_10·a_5_21 + b_3_8·a_5_21
- b_3_8·b_5_24 + b_3_8·a_5_21 + b_2_52·a_1_1·b_3_10 + b_2_52·a_1_1·b_3_8
- b_3_9·b_5_24 + b_4_15·b_4_17 + b_3_8·a_5_21 + b_2_52·a_1_1·b_3_10 + b_2_52·a_1_1·b_3_8
- b_3_10·a_5_21 + b_4_17·a_1_1·b_3_10 + b_2_5·a_1_1·b_5_25
- b_3_9·b_5_25 + b_3_8·b_5_25 + b_3_8·a_5_21 + b_2_52·a_1_1·b_3_10
- b_2_5·b_3_8·b_3_10 + b_2_5·b_6_37 + b_2_54 + b_3_10·a_5_21 + b_4_17·a_1_1·b_3_10
- b_3_10·a_5_21 + b_3_8·a_5_21 + b_4_17·a_1_1·b_3_10 + b_2_52·a_1_1·b_3_10
+ b_6_38·a_1_12
- b_4_15·b_4_17 + b_2_4·b_6_38 + b_2_42·b_4_15
- b_3_8·b_5_25 + b_2_52·b_4_17 + b_3_10·a_5_21 + b_3_8·a_5_21 + a_1_1·b_7_52
- a_1_0·b_7_52
- b_3_10·a_5_21 + a_1_1·b_7_53 + b_4_17·a_1_1·b_3_10 + b_2_52·a_1_1·b_3_8
- a_1_0·b_7_53
- b_4_15·a_5_21
- b_4_15·b_5_24 + b_2_4·b_4_17·b_3_9
- a_1_1·b_3_10·b_5_25 + b_4_17·a_5_21 + b_4_172·a_1_1
- b_4_15·b_5_25
- b_6_37·b_3_8 + b_2_53·b_3_10 + b_2_53·b_3_8 + b_2_52·a_5_21
- b_6_37·b_3_10 + b_6_37·b_3_9 + b_2_52·b_5_25 + b_2_53·b_3_8 + b_4_17·a_5_21
+ b_4_172·a_1_1 + b_2_5·b_6_38·a_1_1 + b_2_52·a_5_21 + b_2_54·a_1_1
- b_6_38·b_3_9 + b_6_38·b_3_8 + b_6_37·b_3_10 + b_6_37·b_3_9 + b_4_17·b_5_24
+ b_2_52·b_5_25 + b_2_53·b_3_8 + b_2_42·b_5_24 + b_4_17·a_5_21 + b_2_52·a_5_21 + b_2_52·b_4_17·a_1_1 + b_2_54·a_1_1 + b_2_42·a_5_21
- b_6_38·b_3_8 + b_6_37·b_3_10 + b_6_37·b_3_9 + b_2_5·b_7_52 + b_2_5·b_4_17·b_3_10
+ b_2_52·b_5_25 + b_2_53·b_3_8 + b_4_17·a_5_21 + b_2_52·b_4_17·a_1_1
- a_1_12·b_7_52
- b_2_4·b_7_52 + b_2_4·b_4_17·b_3_9 + b_2_43·b_3_9
- b_6_37·b_3_10 + b_6_37·b_3_9 + b_2_5·b_7_53 + b_2_52·a_5_21 + b_2_54·a_1_1
- b_6_37·b_3_9 + b_2_53·b_3_10 + b_2_53·b_3_8 + b_2_4·b_7_53 + b_2_42·b_5_24
+ b_2_52·b_4_17·a_1_1 + b_2_54·a_1_1 + b_2_42·a_5_21
- b_8_68·a_1_1 + b_4_17·a_5_21 + b_4_172·a_1_1 + b_2_52·a_5_21 + b_2_52·b_4_17·a_1_1
+ b_2_54·a_1_1
- b_8_68·a_1_0
- a_5_212 + b_4_172·a_1_12
- b_5_242 + b_2_4·b_4_172 + b_4_172·a_1_12
- a_5_21·b_5_24 + b_4_172·a_1_12
- b_5_24·b_5_25 + b_4_17·a_1_1·b_5_25 + b_2_52·a_1_1·b_5_25 + b_4_172·a_1_12
- b_5_24·b_5_25 + a_5_21·b_5_25 + b_2_5·b_4_17·a_1_1·b_3_10 + b_2_52·a_1_1·b_5_25
+ b_4_172·a_1_12
- b_4_15·b_6_38 + b_2_4·b_4_172 + b_2_43·b_4_17
- b_5_24·b_5_25 + b_3_8·b_7_52 + b_2_5·b_3_10·b_5_25 + b_2_52·b_6_38
+ b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_3_10 + b_2_53·a_1_1·b_3_8
- b_5_24·b_5_25 + b_3_9·b_7_52 + b_2_5·b_3_10·b_5_25 + b_2_52·b_6_38 + b_2_4·b_4_172
+ b_2_43·b_4_17 + b_6_38·a_1_1·b_3_10 + b_2_5·a_1_1·b_7_52 + b_2_5·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_3_10 + b_2_53·a_1_1·b_3_8
- b_3_10·b_7_53 + b_4_17·b_6_37 + b_2_52·b_6_37 + b_2_53·b_4_17 + b_2_55
+ b_2_42·b_6_38 + b_2_43·b_4_15 + b_2_5·b_4_17·a_1_1·b_3_10
- b_3_8·b_7_53 + b_2_53·b_4_17 + b_2_55 + b_2_5·b_4_17·a_1_1·b_3_10
+ b_2_53·a_1_1·b_3_10 + b_2_53·a_1_1·b_3_8
- b_5_24·b_5_25 + b_3_9·b_7_53 + b_4_17·b_6_37 + b_2_5·b_3_10·b_5_25 + b_2_55
+ b_2_42·b_6_38 + b_2_43·b_4_15 + b_6_38·a_1_1·b_3_10 + b_2_52·a_1_1·b_5_25 + b_2_53·a_1_1·b_3_10 + b_4_172·a_1_12
- b_5_252 + b_5_24·b_5_25 + b_2_5·b_4_172 + b_2_52·a_1_1·b_5_25 + b_4_172·a_1_12
+ c_8_72·a_1_12
- b_2_5·b_3_10·b_5_25 + b_2_5·b_8_68 + b_2_52·b_6_37 + b_2_5·a_1_1·b_7_52
+ b_2_52·a_1_1·b_5_25 + b_2_53·a_1_1·b_3_8
- b_4_15·b_6_37 + b_2_4·b_8_68 + b_2_43·b_4_15
- b_5_24·b_5_25 + a_1_1·b_9_95 + b_2_52·a_1_1·b_5_25 + b_2_53·a_1_1·b_3_10
+ b_4_172·a_1_12
- a_1_0·b_9_95
- b_6_38·b_5_24 + b_4_172·b_3_9 + b_2_5·b_4_17·b_5_25 + b_2_42·b_4_17·b_3_9
+ b_2_5·b_4_17·a_5_21 + b_2_5·b_4_172·a_1_1 + b_2_52·b_6_38·a_1_1
- b_6_37·b_5_25 + b_2_52·b_4_17·b_3_10 + b_2_53·b_5_25 + b_6_38·a_5_21
+ b_4_17·b_6_38·a_1_1 + b_2_5·b_4_172·a_1_1 + b_2_53·b_4_17·a_1_1
- b_6_37·b_5_25 + b_2_52·b_4_17·b_3_10 + b_2_53·b_5_25 + a_1_1·b_3_10·b_7_52
+ b_2_53·b_4_17·a_1_1
- b_4_15·b_7_52 + b_2_4·b_4_17·b_5_24 + b_2_43·b_5_24 + b_2_43·a_5_21
- b_6_37·b_5_24 + b_4_15·b_7_53 + b_2_42·b_4_17·b_3_9 + b_6_37·a_5_21
+ b_2_53·b_4_17·a_1_1 + b_2_55·a_1_1
- b_6_38·b_5_25 + b_6_38·b_5_24 + b_6_37·b_5_25 + b_4_17·b_7_52 + b_4_172·b_3_10
+ b_4_172·b_3_9 + b_2_5·b_4_17·b_5_25 + b_2_52·b_4_17·b_3_10 + b_2_53·b_5_25 + b_4_17·b_6_38·a_1_1 + b_2_53·a_5_21 + b_2_55·a_1_1 + b_2_5·c_8_72·a_1_1
- b_6_37·a_5_21 + b_2_5·b_4_17·a_5_21 + b_2_5·b_4_172·a_1_1 + b_2_53·a_5_21
+ b_2_53·b_4_17·a_1_1 + b_2_4·c_8_72·a_1_0
- b_8_68·b_3_10 + b_6_38·b_5_24 + b_6_37·b_5_25 + b_6_37·b_5_24 + b_4_172·b_3_9
+ b_2_52·b_4_17·b_3_10 + b_2_54·b_3_10 + b_2_42·b_4_17·b_3_9 + b_2_43·b_5_24 + b_6_37·a_5_21 + b_2_5·b_4_17·a_5_21 + b_2_55·a_1_1 + b_2_43·a_5_21
- b_8_68·b_3_8 + b_6_38·b_5_24 + b_6_37·b_5_25 + b_4_172·b_3_9 + b_2_5·b_4_17·b_5_25
+ b_2_53·b_5_25 + b_2_54·b_3_10 + b_2_54·b_3_8 + b_2_42·b_4_17·b_3_9 + b_2_5·b_4_172·a_1_1 + b_2_53·a_5_21 + b_2_53·b_4_17·a_1_1 + b_2_55·a_1_1
- b_8_68·b_3_9 + b_6_38·b_5_24 + b_6_37·b_5_25 + b_6_37·b_5_24 + b_4_172·b_3_9
+ b_2_5·b_4_17·b_5_25 + b_2_53·b_5_25 + b_2_54·b_3_10 + b_2_54·b_3_8 + b_2_42·b_4_17·b_3_9 + b_2_43·b_5_24 + b_6_37·a_5_21 + b_2_5·b_4_17·a_5_21 + b_2_53·b_4_17·a_1_1 + b_2_55·a_1_1 + b_2_43·a_5_21
- b_6_38·b_5_24 + b_6_37·b_5_25 + b_4_172·b_3_9 + b_2_5·b_9_95 + b_2_52·b_4_17·b_3_10
+ b_2_53·b_5_25 + b_2_54·b_3_10 + b_2_42·b_4_17·b_3_9 + b_2_53·a_5_21 + b_2_55·a_1_1
- b_6_37·b_5_24 + b_2_4·b_9_95 + b_2_42·b_4_17·b_3_9 + b_2_43·b_5_24 + b_6_37·a_5_21
+ b_2_53·b_4_17·a_1_1 + b_2_55·a_1_1
- b_5_24·b_7_52 + b_2_4·b_4_17·b_6_38 + b_4_17·a_1_1·b_7_52 + b_2_52·a_1_1·b_7_52
- b_5_24·b_7_52 + b_2_4·b_4_17·b_6_38 + a_5_21·b_7_52 + b_2_5·b_6_38·a_1_1·b_3_10
+ b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·a_1_1·b_7_52
- a_5_21·b_7_53 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_3_10
+ b_2_53·a_1_1·b_5_25 + b_2_54·a_1_1·b_3_10
- b_6_382 + b_4_173 + b_2_5·b_4_17·b_6_38 + b_2_52·b_4_172 + b_2_53·b_6_38
+ b_2_53·b_6_37 + b_2_54·b_4_17 + b_2_44·b_4_17 + b_4_172·a_1_1·b_3_10 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·a_1_1·b_7_52 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_54·a_1_1·b_3_8 + b_2_52·c_8_72
- b_5_25·b_7_53 + b_5_24·b_7_52 + b_2_52·b_4_172 + b_2_54·b_4_17 + b_2_4·b_4_17·b_6_38
+ b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_54·a_1_1·b_3_10 + b_4_17·b_6_38·a_1_12 + b_2_5·c_8_72·a_1_12
- b_5_25·b_7_53 + b_5_24·b_7_53 + b_6_37·b_6_38 + b_6_372 + b_2_5·b_3_10·b_7_52
+ b_2_53·b_6_38 + b_2_56 + b_2_42·b_4_172 + b_2_44·b_4_17 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·a_1_1·b_7_52 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_5_25 + b_2_54·a_1_1·b_3_8 + b_2_42·c_8_72
- b_5_25·b_7_53 + b_5_25·b_7_52 + b_5_24·b_7_52 + b_4_17·b_3_10·b_5_25
+ b_2_5·b_4_17·b_6_38 + b_2_52·b_4_172 + b_2_54·b_4_17 + b_2_4·b_4_17·b_6_38 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_52·a_1_1·b_7_52 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_54·a_1_1·b_3_8 + b_4_17·b_6_38·a_1_12 + c_8_72·a_1_1·b_3_8
- b_5_25·b_7_53 + b_5_24·b_7_53 + b_6_37·b_6_38 + b_2_5·b_3_10·b_7_52 + b_2_53·b_6_38
+ b_2_54·b_4_17 + b_2_42·b_8_68 + b_2_42·b_4_172 + b_2_44·b_4_15 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·a_1_1·b_7_52 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_5_25 + b_2_54·a_1_1·b_3_8
- b_5_24·b_7_53 + b_5_24·b_7_52 + b_4_17·b_3_10·b_5_25 + b_4_17·b_8_68 + b_2_52·b_8_68
+ b_2_53·b_6_37 + b_2_54·b_4_17 + b_2_4·b_4_17·b_6_38 + b_2_42·b_4_172 + b_2_43·b_6_38 + b_2_44·b_4_15 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_5_25 + b_4_17·b_6_38·a_1_12
- b_4_15·b_8_68 + b_2_4·b_4_17·b_6_37 + b_2_44·b_4_17
- b_5_24·b_7_53 + b_5_24·b_7_52 + b_3_10·b_9_95 + b_4_17·b_3_10·b_5_25 + b_2_54·b_4_17
+ b_2_4·b_4_17·b_6_38 + b_2_43·b_6_38 + b_2_44·b_4_15 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_52·a_1_1·b_7_52 + b_2_54·a_1_1·b_3_10 + b_2_54·a_1_1·b_3_8 + b_4_17·b_6_38·a_1_12
- b_5_24·b_7_52 + b_3_8·b_9_95 + b_2_52·b_4_172 + b_2_53·b_6_37 + b_2_56
+ b_2_4·b_4_17·b_6_38 + b_4_172·a_1_1·b_3_10 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_5_25 + b_2_54·a_1_1·b_3_10 + b_2_54·a_1_1·b_3_8 + b_4_17·b_6_38·a_1_12
- b_5_24·b_7_53 + b_5_24·b_7_52 + b_3_9·b_9_95 + b_2_52·b_4_172 + b_2_53·b_6_37
+ b_2_56 + b_2_4·b_4_17·b_6_38 + b_2_43·b_6_38 + b_2_44·b_4_15 + b_4_172·a_1_1·b_3_10 + b_2_5·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_17·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_3_10 + b_2_53·a_1_1·b_5_25
- b_6_37·b_7_52 + b_2_52·b_6_38·b_3_10 + b_2_52·b_4_17·b_5_25 + b_2_53·b_7_52
+ b_2_4·b_4_17·b_7_53 + b_2_42·b_4_17·b_5_24 + b_2_43·b_7_53 + b_2_44·b_5_24 + b_2_52·b_4_17·a_5_21 + b_2_52·b_4_172·a_1_1 + b_2_54·a_5_21 + b_2_44·a_5_21
- b_6_38·b_7_52 + b_4_17·b_6_38·b_3_10 + b_4_172·b_5_25 + b_2_5·b_4_17·b_7_52
+ b_2_5·b_4_172·b_3_10 + b_2_52·b_4_17·b_5_25 + b_2_53·b_7_52 + b_2_53·b_4_17·b_3_10 + b_2_54·b_5_25 + b_2_55·b_3_10 + b_2_55·b_3_8 + b_2_42·b_4_17·b_5_24 + b_2_44·b_5_24 + b_4_173·a_1_1 + b_2_5·b_4_17·b_6_38·a_1_1 + b_2_53·b_6_38·a_1_1 + b_2_56·a_1_1 + b_2_44·a_5_21 + b_2_5·c_8_72·b_3_8 + b_2_52·c_8_72·a_1_1
- b_6_37·b_7_53 + b_2_53·b_4_17·b_3_10 + b_2_54·b_5_25 + b_2_55·b_3_10 + b_2_55·b_3_8
+ b_2_43·b_4_17·b_3_9 + b_2_52·b_4_17·a_5_21 + b_2_52·b_4_172·a_1_1 + b_2_53·b_6_38·a_1_1 + b_2_54·a_5_21 + b_2_54·b_4_17·a_1_1 + b_2_4·c_8_72·b_3_9
- b_8_68·b_5_24 + b_6_37·b_7_52 + b_2_52·b_6_38·b_3_10 + b_2_52·b_4_17·b_5_25
+ b_2_53·b_7_52 + b_2_43·b_7_53 + b_2_43·b_4_17·b_3_9 + b_2_44·b_5_24 + b_4_172·a_5_21 + b_4_173·a_1_1 + b_2_52·b_4_17·a_5_21 + b_2_52·b_4_172·a_1_1 + b_2_56·a_1_1 + b_2_44·a_5_21
- b_8_68·b_5_25 + b_2_5·b_4_172·b_3_10 + b_2_53·b_4_17·b_3_10 + b_2_54·b_5_25
+ b_2_5·b_6_38·a_5_21
- b_8_68·a_5_21 + b_4_172·a_5_21 + b_4_173·a_1_1 + b_2_52·b_4_17·a_5_21
+ b_2_54·a_5_21 + b_2_54·b_4_17·a_1_1
- b_6_38·b_7_53 + b_4_17·b_9_95 + b_4_172·b_5_25 + b_2_5·b_4_17·b_7_52
+ b_2_5·b_4_172·b_3_10 + b_2_53·b_7_52 + b_2_42·b_9_95 + b_2_42·b_4_17·b_5_24 + b_2_44·b_5_24 + b_4_172·a_5_21 + b_4_173·a_1_1 + b_2_5·b_6_38·a_5_21 + b_2_52·b_4_172·a_1_1 + b_2_53·b_6_38·a_1_1 + b_2_54·a_5_21 + b_2_54·b_4_17·a_1_1 + b_2_56·a_1_1
- b_6_37·b_7_52 + b_4_15·b_9_95 + b_2_52·b_6_38·b_3_10 + b_2_52·b_4_17·b_5_25
+ b_2_53·b_7_52 + b_2_42·b_4_17·b_5_24 + b_2_43·b_7_53 + b_2_43·b_4_17·b_3_9 + b_2_44·b_5_24 + b_2_52·b_4_17·a_5_21 + b_2_52·b_4_172·a_1_1 + b_2_54·a_5_21 + b_2_44·a_5_21
- b_7_522 + b_2_52·b_4_17·b_6_38 + b_2_53·b_4_172 + b_2_54·b_6_38 + b_2_54·b_6_37
+ b_2_55·b_4_17 + b_2_4·b_4_173 + b_2_45·b_4_17 + b_2_5·b_4_17·a_1_1·b_7_52 + b_2_52·b_6_38·a_1_1·b_3_10 + b_2_54·a_1_1·b_5_25 + b_2_55·a_1_1·b_3_10 + b_4_173·a_1_12 + b_2_53·c_8_72 + b_2_5·c_8_72·a_1_1·b_3_8 + b_4_17·c_8_72·a_1_12
- b_7_52·b_7_53 + b_4_172·b_6_37 + b_2_52·b_4_17·b_6_38 + b_2_53·b_8_68
+ b_2_53·b_4_172 + b_2_54·b_6_38 + b_2_54·b_6_37 + b_2_42·b_4_17·b_6_38 + b_2_42·b_4_17·b_6_37 + b_4_17·b_6_38·a_1_1·b_3_10 + b_4_172·a_1_1·b_5_25 + b_2_5·b_4_17·a_1_1·b_7_52 + b_2_53·a_1_1·b_7_52 + b_2_54·a_1_1·b_5_25 + b_2_55·a_1_1·b_3_10
- b_7_52·b_7_53 + b_6_37·b_8_68 + b_4_172·b_6_37 + b_2_52·b_4_17·b_6_38 + b_2_54·b_6_38
+ b_2_55·b_4_17 + b_2_57 + b_2_42·b_4_17·b_6_38 + b_2_43·b_8_68 + b_2_44·b_6_38 + b_4_17·b_6_38·a_1_1·b_3_10 + b_4_172·a_1_1·b_5_25 + b_2_52·b_6_38·a_1_1·b_3_10 + b_2_53·a_1_1·b_7_52 + b_2_54·a_1_1·b_5_25 + b_2_4·b_4_15·c_8_72
- b_7_532 + b_2_53·b_4_172 + b_2_57 + b_2_4·b_4_17·b_8_68 + b_2_44·b_6_38
+ b_2_45·b_4_15 + b_2_52·b_4_17·a_1_1·b_5_25 + b_2_55·a_1_1·b_3_8 + b_2_4·b_4_17·c_8_72
- b_7_52·b_7_53 + b_7_522 + b_6_38·b_8_68 + b_4_17·b_3_10·b_7_52 + b_2_5·b_4_17·b_8_68
+ b_2_5·b_4_173 + b_2_52·b_3_10·b_7_52 + b_2_54·b_6_38 + b_2_54·b_6_37 + b_2_42·b_4_17·b_6_38 + b_2_5·b_4_17·a_1_1·b_7_52 + b_2_5·b_4_172·a_1_1·b_3_10 + b_2_53·b_4_17·a_1_1·b_3_10 + b_2_55·a_1_1·b_3_10 + b_4_173·a_1_12 + b_2_53·c_8_72 + b_2_5·c_8_72·a_1_1·b_3_10 + b_4_17·c_8_72·a_1_12
- b_7_52·b_7_53 + b_5_24·b_9_95 + b_2_5·b_4_17·b_8_68 + b_2_52·b_4_17·b_6_38
+ b_2_54·b_6_38 + b_2_55·b_4_17 + b_2_42·b_4_17·b_6_37 + b_2_43·b_4_172 + b_2_44·b_6_38 + b_2_45·b_4_15 + b_4_172·a_1_1·b_5_25 + b_2_5·b_4_172·a_1_1·b_3_10 + b_2_52·b_6_38·a_1_1·b_3_10 + b_2_55·a_1_1·b_3_8 + b_4_173·a_1_12
- b_7_52·b_7_53 + b_5_25·b_9_95 + b_4_172·b_6_37 + b_2_5·b_4_173
+ b_2_52·b_4_17·b_6_38 + b_2_53·b_4_172 + b_2_54·b_6_38 + b_2_42·b_4_17·b_6_38 + b_2_42·b_4_17·b_6_37 + b_4_172·a_1_1·b_5_25 + b_2_53·b_4_17·a_1_1·b_3_10 + b_2_54·a_1_1·b_5_25 + b_2_55·a_1_1·b_3_10 + b_2_55·a_1_1·b_3_8 + b_4_17·c_8_72·a_1_12
- a_5_21·b_9_95 + b_4_172·a_1_1·b_5_25 + b_2_5·b_4_172·a_1_1·b_3_10
+ b_2_53·b_4_17·a_1_1·b_3_10 + b_2_54·a_1_1·b_5_25
- b_8_68·b_7_53 + b_2_52·b_4_172·b_3_10 + b_2_55·b_5_25 + b_2_56·b_3_10
+ b_2_56·b_3_8 + b_2_43·b_9_95 + b_2_43·b_4_17·b_5_24 + b_2_45·b_5_24 + b_4_17·b_6_38·a_5_21 + b_4_172·b_6_38·a_1_1 + b_2_5·b_4_173·a_1_1 + b_2_52·b_6_38·a_5_21 + b_2_53·b_4_172·a_1_1 + b_2_55·a_5_21 + b_2_57·a_1_1 + b_2_4·c_8_72·b_5_24 + b_2_4·c_8_72·a_5_21
- b_8_68·b_7_53 + b_6_37·b_9_95 + b_2_53·b_4_17·b_5_25 + b_2_56·b_3_8
+ b_2_44·b_4_17·b_3_9 + b_2_5·b_4_172·a_5_21 + b_2_5·b_4_173·a_1_1 + b_2_52·b_6_38·a_5_21 + b_2_52·b_4_17·b_6_38·a_1_1 + b_2_43·c_8_72·a_1_0
- b_8_68·b_7_53 + b_8_68·b_7_52 + b_2_5·b_4_17·b_6_38·b_3_10 + b_2_5·b_4_172·b_5_25
+ b_2_52·b_4_172·b_3_10 + b_2_53·b_6_38·b_3_10 + b_2_53·b_4_17·b_5_25 + b_2_54·b_7_52 + b_2_55·b_5_25 + b_2_56·b_3_10 + b_2_56·b_3_8 + b_2_4·b_4_17·b_9_95 + b_2_42·b_4_172·b_3_9 + b_2_43·b_4_17·b_5_24 + b_2_44·b_4_17·b_3_9 + b_2_45·b_5_24 + b_4_17·b_6_38·a_5_21 + b_4_172·b_6_38·a_1_1 + b_2_53·b_4_172·a_1_1 + b_2_45·a_5_21 + b_2_4·c_8_72·b_5_24 + b_2_5·c_8_72·a_5_21 + b_2_5·b_4_17·c_8_72·a_1_1 + b_2_53·c_8_72·a_1_1 + b_2_4·c_8_72·a_5_21
- b_6_38·b_9_95 + b_4_172·b_7_53 + b_4_172·b_7_52 + b_4_173·b_3_10
+ b_2_5·b_4_172·b_5_25 + b_2_53·b_6_38·b_3_10 + b_2_53·b_4_17·b_5_25 + b_2_42·b_4_17·b_7_53 + b_2_44·b_4_17·b_3_9 + b_4_17·b_6_38·a_5_21 + b_2_52·b_4_17·b_6_38·a_1_1 + b_2_53·b_4_17·a_5_21 + b_2_53·b_4_172·a_1_1 + b_2_55·b_4_17·a_1_1 + b_2_57·a_1_1 + b_2_5·c_8_72·a_5_21 + b_2_53·c_8_72·a_1_1
- b_8_682 + b_2_52·b_4_173 + b_2_56·b_4_17 + b_2_58 + b_2_42·b_4_17·b_8_68
+ b_2_44·b_4_172 + b_2_45·b_6_38 + b_2_46·b_4_17 + b_2_46·b_4_15 + b_2_42·b_4_17·c_8_72
- b_7_52·b_9_95 + b_8_682 + b_4_172·b_8_68 + b_2_5·b_4_172·b_6_38
+ b_2_52·b_4_17·b_8_68 + b_2_52·b_4_173 + b_2_53·b_3_10·b_7_52 + b_2_54·b_8_68 + b_2_54·b_4_172 + b_2_55·b_6_37 + b_2_58 + b_2_42·b_4_173 + b_2_45·b_6_38 + b_2_46·b_4_17 + b_2_46·b_4_15 + b_4_172·a_1_1·b_7_52 + b_2_5·b_4_17·b_6_38·a_1_1·b_3_10 + b_2_5·b_4_172·a_1_1·b_5_25 + b_2_52·b_4_17·a_1_1·b_7_52 + b_2_52·b_4_172·a_1_1·b_3_10 + b_2_53·b_6_38·a_1_1·b_3_10 + b_2_54·a_1_1·b_7_52 + b_4_172·b_6_38·a_1_12 + b_2_42·b_4_17·c_8_72 + b_2_5·c_8_72·a_1_1·b_5_25 + b_2_52·c_8_72·a_1_1·b_3_10 + b_2_52·c_8_72·a_1_1·b_3_8 + b_6_38·c_8_72·a_1_12
- b_7_53·b_9_95 + b_8_682 + b_2_54·b_8_68 + b_2_54·b_4_172 + b_2_56·b_4_17
+ b_2_4·b_4_172·b_6_37 + b_2_46·b_4_17 + b_4_172·a_1_1·b_7_52 + b_2_5·b_4_17·b_6_38·a_1_1·b_3_10 + b_2_52·b_4_172·a_1_1·b_3_10 + b_2_55·a_1_1·b_5_25 + b_2_56·a_1_1·b_3_10 + b_4_172·b_6_38·a_1_12 + b_2_4·b_6_38·c_8_72 + b_2_42·b_4_17·c_8_72 + b_2_42·b_4_15·c_8_72
- b_8_68·b_9_95 + b_2_5·b_4_173·b_3_10 + b_2_53·b_4_172·b_3_10 + b_2_56·b_5_25
+ b_2_57·b_3_10 + b_2_43·b_4_172·b_3_9 + b_2_44·b_4_17·b_5_24 + b_2_45·b_4_17·b_3_9 + b_4_173·a_5_21 + b_4_174·a_1_1 + b_2_52·b_4_172·a_5_21 + b_2_53·b_6_38·a_5_21 + b_2_54·b_4_172·a_1_1 + b_2_56·b_4_17·a_1_1 + b_2_58·a_1_1 + b_2_4·b_4_17·c_8_72·b_3_9
- b_9_952 + b_2_5·b_4_174 + b_2_57·b_4_17 + b_2_4·b_4_172·b_8_68
+ b_2_44·b_4_17·b_6_38 + b_2_45·b_4_172 + b_2_46·b_6_38 + b_2_47·b_4_15 + b_4_173·a_1_1·b_5_25 + b_2_56·a_1_1·b_5_25 + b_2_4·b_4_172·c_8_72 + b_4_172·c_8_72·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_2, a Duflot regular element of degree 1
- c_8_72, a Duflot regular element of degree 8
- b_4_17 + b_2_42, an element of degree 4
- b_3_10 + b_3_8, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_3_10 → 0, an element of degree 3
- b_4_15 → 0, an element of degree 4
- b_4_17 → 0, an element of degree 4
- a_5_21 → 0, an element of degree 5
- b_5_24 → 0, an element of degree 5
- b_5_25 → 0, an element of degree 5
- b_6_37 → 0, an element of degree 6
- b_6_38 → 0, an element of degree 6
- b_7_52 → 0, an element of degree 7
- b_7_53 → 0, an element of degree 7
- b_8_68 → 0, an element of degree 8
- c_8_72 → c_1_18, an element of degree 8
- b_9_95 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- b_3_8 → c_1_23, an element of degree 3
- b_3_9 → c_1_23, an element of degree 3
- b_3_10 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23, an element of degree 3
- b_4_15 → 0, an element of degree 4
- b_4_17 → c_1_34 + c_1_22·c_1_32 + c_1_24, an element of degree 4
- a_5_21 → 0, an element of degree 5
- b_5_24 → 0, an element of degree 5
- b_5_25 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_25, an element of degree 5
- b_6_37 → c_1_24·c_1_32 + c_1_25·c_1_3, an element of degree 6
- b_6_38 → c_1_36 + c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_25·c_1_3 + c_1_26
+ c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_7_52 → c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_25·c_1_32
+ c_1_12·c_1_25 + c_1_14·c_1_23, an element of degree 7
- b_7_53 → c_1_23·c_1_34 + c_1_25·c_1_32, an element of degree 7
- b_8_68 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32 + c_1_28, an element of degree 8
- c_8_72 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
+ c_1_26·c_1_32 + c_1_27·c_1_3 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_18, an element of degree 8
- b_9_95 → c_1_2·c_1_38 + c_1_25·c_1_34 + c_1_27·c_1_32 + c_1_28·c_1_3, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_10 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_4_15 → c_1_22·c_1_32 + c_1_23·c_1_3, an element of degree 4
- b_4_17 → c_1_34 + c_1_22·c_1_32, an element of degree 4
- a_5_21 → 0, an element of degree 5
- b_5_24 → c_1_2·c_1_34 + c_1_23·c_1_32, an element of degree 5
- b_5_25 → 0, an element of degree 5
- b_6_37 → c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_22·c_1_32
+ c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_6_38 → c_1_36 + c_1_2·c_1_35 + c_1_22·c_1_34 + c_1_23·c_1_33 + c_1_24·c_1_32
+ c_1_25·c_1_3, an element of degree 6
- b_7_52 → c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33
+ c_1_25·c_1_32 + c_1_26·c_1_3, an element of degree 7
- b_7_53 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32
+ c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3, an element of degree 7
- b_8_68 → c_1_26·c_1_32 + c_1_27·c_1_3 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_25·c_1_32
+ c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3, an element of degree 8
- c_8_72 → c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_25·c_1_32
+ c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_18, an element of degree 8
- b_9_95 → c_1_23·c_1_36 + c_1_24·c_1_35 + c_1_26·c_1_33 + c_1_27·c_1_32
+ c_1_1·c_1_22·c_1_36 + c_1_1·c_1_23·c_1_35 + c_1_1·c_1_24·c_1_34 + c_1_1·c_1_25·c_1_33 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_22·c_1_35 + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32 + c_1_14·c_1_2·c_1_34 + c_1_14·c_1_23·c_1_32, an element of degree 9
|