Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 87 of order 128
General information on the group
- The group has 2 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t7 + t5 + t3 + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-7,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_3_1, an element of degree 3
- b_3_2, an element of degree 3
- a_4_3, a nilpotent element of degree 4
- b_4_4, an element of degree 4
- a_5_4, a nilpotent element of degree 5
- a_5_3, a nilpotent element of degree 5
- b_5_6, an element of degree 5
- a_6_6, a nilpotent element of degree 6
- b_7_8, an element of degree 7
- b_7_9, an element of degree 7
- a_8_5, a nilpotent element of degree 8
- c_8_13, a Duflot regular element of degree 8
- b_9_16, an element of degree 9
Ring relations
There are 98 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1
- a_2_12
- a_1_0·b_3_1
- a_1_0·b_3_2
- a_2_1·b_3_1
- a_2_1·b_3_2
- a_4_3·a_1_0
- a_4_3·b_1_1
- b_4_4·a_1_0
- a_2_1·a_4_3
- b_3_12 + b_4_4·b_1_12 + a_2_1·b_4_4
- a_1_0·a_5_4
- b_1_1·a_5_4
- a_1_0·a_5_3
- b_1_1·a_5_3 + a_2_1·b_4_4
- a_1_0·b_5_6
- b_3_22 + b_3_12 + b_1_1·b_5_6
- a_4_3·b_3_1
- a_4_3·b_3_2
- a_2_1·a_5_4
- a_2_1·a_5_3
- a_2_1·b_5_6
- a_6_6·a_1_0
- a_6_6·b_1_1
- a_4_32
- b_3_1·a_5_4
- b_3_2·a_5_4
- b_3_1·a_5_3
- b_3_2·a_5_3 + a_4_3·b_4_4
- a_2_1·a_6_6
- a_1_0·b_7_8
- b_3_1·b_5_6 + b_1_1·b_7_8 + b_4_4·b_1_1·b_3_2 + a_4_3·b_4_4
- a_1_0·b_7_9
- b_3_2·b_5_6 + b_1_1·b_7_9 + b_4_4·b_1_1·b_3_2 + b_4_4·b_1_1·b_3_1
- a_4_3·a_5_4
- a_4_3·a_5_3
- b_4_4·a_5_4 + a_4_3·b_5_6
- a_6_6·b_3_1
- a_6_6·b_3_2 + b_4_4·a_5_4
- a_2_1·b_7_8
- b_4_4·a_5_4 + a_2_1·b_7_9
- a_8_5·a_1_0
- a_8_5·b_1_1 + b_4_4·a_5_4
- a_5_42
- a_2_1·b_4_42 + a_5_32
- a_5_4·a_5_3
- a_5_4·b_5_6
- a_4_3·a_6_6
- a_5_3·b_5_6 + b_4_4·a_6_6
- b_3_1·b_7_8 + b_4_4·b_3_1·b_3_2 + b_4_4·b_1_1·b_5_6 + a_5_3·b_5_6
- b_3_2·b_7_8 + b_3_1·b_7_9 + b_4_4·b_3_1·b_3_2 + b_4_4·b_1_1·b_5_6 + a_5_3·b_5_6
- b_5_62 + b_3_2·b_7_9 + b_4_4·b_3_1·b_3_2 + b_4_42·b_1_12 + a_5_3·b_5_6
+ a_2_1·b_4_42
- b_5_62 + b_1_13·b_7_9 + b_1_15·b_5_6 + b_4_4·b_1_1·b_5_6 + b_4_4·b_1_13·b_3_1
+ a_2_1·b_4_42 + c_8_13·b_1_12
- a_2_1·a_8_5
- a_1_0·b_9_16
- b_1_1·b_9_16 + b_1_13·b_7_9 + b_1_13·b_7_8 + b_1_15·b_5_6 + b_4_4·b_3_1·b_3_2
+ b_4_4·b_1_13·b_3_2 + b_4_4·b_1_16 + a_5_3·b_5_6 + a_2_1·b_4_42
- a_6_6·a_5_3
- a_6_6·a_5_4
- a_6_6·b_5_6
- a_4_3·b_7_8
- a_4_3·b_7_9
- a_8_5·b_3_1
- a_8_5·b_3_2
- a_2_1·b_9_16
- a_6_62
- a_5_3·b_7_8
- a_5_4·b_7_8
- a_5_4·b_7_9
- b_5_6·b_7_8 + b_1_12·b_3_1·b_7_9 + b_1_15·b_7_8 + b_4_4·b_1_1·b_7_9
+ b_4_4·b_1_1·b_7_8 + b_4_4·b_1_15·b_3_2 + b_4_42·b_1_1·b_3_1 + b_4_42·b_1_14 + a_5_3·b_7_9 + c_8_13·b_1_1·b_3_1
- b_5_6·b_7_9 + b_1_17·b_5_6 + b_4_4·b_1_1·b_7_8 + b_4_4·b_1_13·b_5_6
+ b_4_4·b_1_15·b_3_2 + b_4_42·b_1_1·b_3_2 + b_4_42·b_1_14 + c_8_13·b_1_1·b_3_2 + c_8_13·b_1_14
- a_4_3·a_8_5
- a_5_3·b_7_9 + b_4_4·a_8_5 + a_4_3·b_4_42
- b_3_1·b_9_16 + b_1_12·b_3_1·b_7_9 + b_1_15·b_7_8 + b_4_4·b_1_13·b_5_6
+ b_4_4·b_1_15·b_3_2 + b_4_4·b_1_15·b_3_1 + b_4_42·b_1_1·b_3_2 + a_4_3·b_4_42
- b_3_2·b_9_16 + b_1_12·b_3_1·b_7_9 + b_1_17·b_5_6 + b_4_4·b_1_1·b_7_8
+ b_4_4·b_1_13·b_5_6 + b_4_42·b_1_1·b_3_2 + b_4_42·b_1_1·b_3_1 + a_5_3·b_7_9 + a_4_3·b_4_42 + c_8_13·b_1_14
- a_6_6·b_7_8
- a_6_6·b_7_9
- a_2_1·b_4_4·b_7_9 + a_8_5·a_5_3
- a_8_5·a_5_4
- a_8_5·b_5_6 + a_2_1·b_4_4·b_7_9
- a_4_3·b_9_16 + a_2_1·b_4_4·b_7_9
- b_7_8·b_7_9 + b_7_82 + b_1_17·b_7_8 + b_4_4·b_1_13·b_7_8 + b_4_4·b_1_14·b_3_1·b_3_2
+ b_4_4·b_1_17·b_3_2 + b_4_42·b_3_1·b_3_2 + b_4_42·b_1_13·b_3_2 + b_4_42·b_1_13·b_3_1 + c_8_13·b_3_1·b_3_2 + c_8_13·b_1_13·b_3_1
- b_7_82 + b_4_4·b_1_13·b_7_9 + b_4_4·b_1_15·b_5_6 + b_4_42·b_1_13·b_3_1
+ b_4_43·b_1_12 + b_4_4·a_5_32 + b_4_4·c_8_13·b_1_12 + a_2_1·b_4_4·c_8_13
- b_7_92 + b_1_17·b_7_9 + b_4_4·b_1_17·b_3_2 + b_4_4·b_1_17·b_3_1
+ b_4_42·b_1_1·b_5_6 + b_4_42·b_1_16 + b_4_4·a_5_32 + c_8_13·b_1_1·b_5_6 + c_8_13·b_1_13·b_3_2 + a_2_1·b_4_4·c_8_13
- a_6_6·a_8_5
- a_5_3·b_9_16 + b_4_42·a_6_6 + b_4_4·a_5_32
- a_5_4·b_9_16
- b_5_6·b_9_16 + b_1_14·b_3_1·b_7_9 + b_1_17·b_7_9 + b_1_17·b_7_8 + b_4_4·b_3_1·b_7_9
+ b_4_4·b_1_15·b_5_6 + b_4_4·b_1_17·b_3_1 + b_4_42·b_3_1·b_3_2 + b_4_43·b_1_12 + c_8_13·b_1_13·b_3_2 + c_8_13·b_1_13·b_3_1 + a_2_1·b_4_4·c_8_13
- a_8_5·b_7_8
- a_8_5·b_7_9
- a_6_6·b_9_16
- a_8_52
- b_7_8·b_9_16 + b_1_16·b_3_1·b_7_9 + b_4_4·b_1_12·b_3_1·b_7_9 + b_4_4·b_1_15·b_7_9
+ b_4_4·b_1_15·b_7_8 + b_4_4·b_1_16·b_3_1·b_3_2 + b_4_42·b_1_1·b_7_9 + b_4_42·b_1_1·b_7_8 + b_4_42·b_1_13·b_5_6 + b_4_42·b_1_15·b_3_2 + b_4_42·b_1_18 + b_4_42·a_8_5 + a_4_3·b_4_43 + c_8_13·b_1_12·b_3_1·b_3_2
- b_7_9·b_9_16 + b_1_19·b_7_9 + b_1_19·b_7_8 + b_1_111·b_5_6
+ b_4_4·b_1_12·b_3_1·b_7_9 + b_4_4·b_1_15·b_7_9 + b_4_4·b_1_15·b_7_8 + b_4_4·b_1_16·b_3_1·b_3_2 + b_4_4·b_1_17·b_5_6 + b_4_4·b_1_19·b_3_2 + b_4_4·b_1_19·b_3_1 + b_4_42·b_1_1·b_7_8 + b_4_42·b_1_15·b_3_2 + b_4_42·b_1_15·b_3_1 + b_4_43·b_1_1·b_3_1 + b_4_43·b_1_14 + b_4_42·a_8_5 + c_8_13·b_1_12·b_3_1·b_3_2 + c_8_13·b_1_13·b_5_6 + c_8_13·b_1_15·b_3_1 + c_8_13·b_1_18 + b_4_4·c_8_13·b_1_1·b_3_1 + a_4_3·b_4_4·c_8_13
- a_8_5·b_9_16
- b_9_162 + b_1_113·b_5_6 + b_4_4·b_1_17·b_7_9 + b_4_4·b_1_111·b_3_2
+ b_4_42·b_1_17·b_3_1 + b_4_43·b_1_1·b_5_6 + b_4_44·b_1_12 + b_4_42·a_5_32 + c_8_13·b_1_15·b_5_6 + c_8_13·b_1_17·b_3_2 + c_8_13·b_1_110 + b_4_4·c_8_13·b_1_16 + c_8_13·a_5_32
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_13, a Duflot regular element of degree 8
- b_1_14 + b_4_4, an element of degree 4
- b_3_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, 1, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_1 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → 0, an element of degree 4
- a_5_4 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- b_5_6 → 0, an element of degree 5
- a_6_6 → 0, an element of degree 6
- b_7_8 → 0, an element of degree 7
- b_7_9 → 0, an element of degree 7
- a_8_5 → 0, an element of degree 8
- c_8_13 → c_1_08, an element of degree 8
- b_9_16 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_1 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_4 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- b_5_6 → c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- a_6_6 → 0, an element of degree 6
- b_7_8 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
+ c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_9 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_03·c_1_14 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13 + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
- a_8_5 → 0, an element of degree 8
- c_8_13 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_03·c_1_15 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8
- b_9_16 → c_1_1·c_1_28 + c_1_17·c_1_22 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_13·c_1_25
+ c_1_0·c_1_15·c_1_23 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_14·c_1_23 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_17 + c_1_03·c_1_16 + c_1_05·c_1_14 + c_1_06·c_1_13, an element of degree 9
|