Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 898 of order 128
General information on the group
- The group has 3 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 − t2 + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-5,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_3_3, a nilpotent element of degree 3
- b_4_4, an element of degree 4
- a_5_4, a nilpotent element of degree 5
- b_5_6, an element of degree 5
- b_6_8, an element of degree 6
- b_7_10, an element of degree 7
- c_8_13, a Duflot regular element of degree 8
- b_9_17, an element of degree 9
Ring relations
There are 34 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_1_0·a_3_3
- b_1_12·a_3_3 + a_1_2·b_1_14
- b_4_4·a_1_0
- a_3_32
- a_1_0·a_5_4
- a_1_0·b_5_6
- b_1_12·a_5_4
- b_6_8·a_1_0
- a_3_3·a_5_4
- a_3_3·b_5_6 + a_1_2·b_1_12·b_5_6
- a_1_0·b_7_10
- b_6_8·a_3_3 + b_6_8·a_1_2·b_1_12 + b_4_4·a_5_4
- b_1_12·b_7_10 + b_1_14·b_5_6 + b_6_8·b_1_13 + b_4_4·b_5_6 + b_4_4·a_5_4
- a_5_42
- a_5_4·b_5_6
- b_5_62 + b_4_4·b_1_16 + a_1_2·b_1_19
- a_3_3·b_7_10 + a_1_2·b_1_14·b_5_6 + b_6_8·a_1_2·b_1_13 + b_4_4·a_1_2·b_5_6
- a_1_0·b_9_17
- b_6_8·a_5_4 + b_4_42·a_3_3 + b_4_42·a_1_2·b_1_12
- b_1_12·b_9_17 + b_6_8·b_5_6 + b_4_42·b_1_13 + a_1_2·b_1_110 + b_4_4·a_1_2·b_1_16
+ b_4_42·a_3_3 + b_4_42·a_1_2·b_1_12
- a_5_4·b_7_10 + b_4_42·a_1_2·a_3_3
- b_5_6·b_7_10 + b_6_8·b_1_1·b_5_6 + b_4_4·b_1_18 + b_4_42·b_1_14 + a_1_2·b_1_111
+ b_4_4·a_1_2·b_1_17 + b_4_42·b_1_1·a_3_3 + b_4_42·a_1_2·b_1_13 + b_4_42·a_1_2·a_3_3
- b_6_8·b_1_16 + b_6_82 + b_4_4·b_1_13·b_5_6 + b_4_4·b_1_18 + b_4_4·b_6_8·b_1_12
+ b_4_43 + a_1_2·b_1_16·b_5_6 + b_4_4·a_1_2·b_1_17 + b_4_42·b_1_1·a_3_3 + c_8_13·b_1_14
- a_3_3·b_9_17 + b_6_8·a_1_2·b_5_6 + b_4_42·a_1_2·b_1_13
- b_6_8·b_7_10 + b_6_8·b_1_12·b_5_6 + b_6_82·b_1_1 + b_4_4·b_9_17 + b_4_43·b_1_1
+ b_4_4·a_1_2·b_1_18 + b_4_42·a_1_2·b_1_14 + b_4_42·a_1_2·b_1_1·a_3_3
- b_7_102 + b_6_82·b_1_12 + b_4_4·b_1_110 + b_4_43·b_1_12 + a_1_2·b_1_113
+ b_4_42·a_1_2·b_1_15
- a_5_4·b_9_17 + b_4_42·a_1_2·a_5_4
- b_5_6·b_9_17 + b_4_4·b_6_8·b_1_14 + b_4_42·b_1_1·b_5_6 + a_1_2·b_1_18·b_5_6
+ b_6_82·a_1_2·b_1_1 + b_4_4·a_1_2·b_1_19 + b_4_4·b_6_8·a_1_2·b_1_13 + b_4_42·b_1_1·a_5_4 + b_4_43·a_1_2·b_1_1 + b_4_42·a_1_2·a_5_4 + c_8_13·a_1_2·b_1_15
- b_6_8·b_9_17 + b_6_8·b_1_14·b_5_6 + b_4_4·b_1_16·b_5_6 + b_4_4·b_6_8·b_5_6
+ b_4_42·b_7_10 + b_4_42·b_1_12·b_5_6 + b_4_42·b_1_17 + b_6_82·a_1_2·b_1_12 + b_4_4·a_1_2·b_1_110 + b_4_42·a_1_2·b_1_1·b_5_6 + b_4_43·a_3_3 + b_4_42·a_1_2·b_1_1·a_5_4 + c_8_13·b_1_12·b_5_6 + c_8_13·a_1_2·b_1_16
- b_7_10·b_9_17 + b_6_8·b_1_15·b_5_6 + b_4_4·b_1_17·b_5_6 + b_4_4·b_6_8·b_1_1·b_5_6
+ b_4_4·b_6_82 + b_4_42·b_6_8·b_1_12 + b_4_44 + a_1_2·b_1_110·b_5_6 + b_4_42·a_1_2·b_1_17 + b_4_43·a_1_2·b_1_13 + c_8_13·b_1_13·b_5_6 + b_4_4·c_8_13·b_1_14
- b_9_172 + b_4_4·b_6_82·b_1_12 + b_4_44·b_1_12 + b_6_82·a_1_2·b_1_15
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_13, a Duflot regular element of degree 8
- b_1_14 + b_4_4, an element of degree 4
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 3, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_3_3 → 0, an element of degree 3
- b_4_4 → 0, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_6 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_13 → c_1_08, an element of degree 8
- b_9_17 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_3_3 → 0, an element of degree 3
- b_4_4 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_6 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_6_8 → c_1_26 + c_1_15·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_7_10 → c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23 + c_1_15·c_1_22
+ c_1_02·c_1_15 + c_1_04·c_1_13, an element of degree 7
- c_8_13 → c_1_12·c_1_26 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
- b_9_17 → c_1_12·c_1_27 + c_1_15·c_1_24 + c_1_16·c_1_23 + c_1_17·c_1_22
+ c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_14·c_1_2, an element of degree 9
|