Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 923 of order 128
General information on the group
- The group has 3 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t6 + t5 + t2 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- a_5_15, a nilpotent element of degree 5
- b_5_14, an element of degree 5
- a_6_16, a nilpotent element of degree 6
- c_8_31, a Duflot regular element of degree 8
Ring relations
There are 20 minimal relations of maximal degree 12:
- a_1_0·b_1_1
- a_1_0·b_1_2
- a_2_4·a_1_0
- b_2_5·b_1_1 + a_2_4·b_1_2 + a_1_03
- a_2_42
- a_2_4·b_2_5·b_1_2 + b_2_5·a_1_03
- b_1_2·a_5_15 + a_2_4·b_2_52
- b_1_1·a_5_15
- a_1_0·b_5_14
- a_2_4·a_5_15
- b_2_5·b_5_14 + b_2_53·b_1_2 + a_6_16·b_1_2 + a_1_02·a_5_15
- a_6_16·a_1_0
- a_6_16·b_1_1 + a_2_4·b_5_14 + b_2_52·a_1_03
- a_2_4·a_6_16
- a_5_15·b_5_14 + a_2_4·b_2_54
- a_5_152 + b_2_52·a_1_0·a_5_15 + b_2_54·a_1_02 + c_8_31·a_1_02
- b_5_142 + b_1_1·b_1_24·b_5_14 + b_1_12·b_1_23·b_5_14 + b_2_54·b_1_22
+ a_2_4·b_1_28 + a_2_4·b_1_1·b_1_22·b_5_14 + a_2_4·b_1_13·b_5_14 + a_2_4·b_1_14·b_1_24 + c_8_31·b_1_12
- a_6_16·a_5_15
- a_6_16·b_5_14 + b_2_52·a_6_16·b_1_2 + a_2_4·b_1_24·b_5_14
+ a_2_4·b_1_1·b_1_23·b_5_14 + a_2_4·c_8_31·b_1_1
- a_6_162
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_31, a Duflot regular element of degree 8
- b_1_22 + b_1_1·b_1_2 + b_1_12 + b_2_5, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_14 → 0, an element of degree 5
- a_6_16 → 0, an element of degree 6
- c_8_31 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_14 → c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- a_6_16 → 0, an element of degree 6
- c_8_31 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_23 + c_1_04·c_1_24
+ c_1_04·c_1_1·c_1_23 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- a_5_15 → 0, an element of degree 5
- b_5_14 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- a_6_16 → 0, an element of degree 6
- c_8_31 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|