Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 929 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t9 − t8 + t6 − t5 − t4 + t3 − t2 − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_1, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_2, an element of degree 1
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_3_8, an element of degree 3
- b_4_9, an element of degree 4
- b_4_12, an element of degree 4
- b_5_17, an element of degree 5
- b_5_18, an element of degree 5
- b_5_19, an element of degree 5
- b_6_27, an element of degree 6
- b_8_43, an element of degree 8
- c_8_44, a Duflot regular element of degree 8
Ring relations
There are 53 minimal relations of maximal degree 16:
- a_1_1·b_1_0
- b_1_0·b_1_2
- a_1_12·b_1_2 + a_1_13
- b_2_4·b_1_2 + a_1_13
- b_2_5·a_1_1 + a_1_13
- a_1_14
- b_2_4·b_2_5
- b_1_0·b_3_8 + b_2_4·a_1_12
- a_1_12·b_3_8
- b_4_9·a_1_1
- b_4_9·b_1_0
- b_4_12·b_1_0
- b_2_4·b_4_9 + b_2_4·a_1_1·b_3_8
- b_3_82 + b_1_2·b_5_18 + b_1_2·b_5_17 + b_2_5·b_4_12 + b_2_4·b_4_12 + a_1_1·b_5_17
+ b_4_12·a_1_1·b_1_2 + b_4_12·a_1_12
- b_1_2·b_5_17 + b_4_12·b_1_22 + b_2_5·b_1_2·b_3_8 + a_1_1·b_5_18 + a_1_1·b_5_17
- b_1_0·b_5_18
- b_1_2·b_5_19 + b_1_23·b_3_8 + b_4_12·b_1_22 + b_4_9·b_1_22 + a_1_1·b_1_22·b_3_8
- a_1_1·b_5_19 + a_1_1·b_1_22·b_3_8 + b_4_12·a_1_1·b_1_2 + b_2_4·a_1_1·b_3_8
- b_1_0·b_5_19 + b_1_0·b_5_17 + b_2_42·a_1_12
- a_1_12·b_5_18
- b_2_5·b_5_19 + b_2_5·b_5_17 + b_2_5·b_1_22·b_3_8 + b_2_5·b_4_9·b_1_2 + b_2_52·b_3_8
+ a_1_12·b_5_17
- b_2_4·b_5_19 + b_2_4·b_5_18 + b_2_4·b_5_17 + b_2_42·b_3_8 + a_1_12·b_5_17
- b_1_22·b_5_18 + b_6_27·b_1_2 + b_4_9·b_3_8 + b_4_9·b_1_23 + b_2_5·b_5_18
+ b_2_5·b_4_12·b_1_2 + b_2_5·b_4_9·b_1_2 + b_2_4·b_4_12·a_1_1 + a_1_12·b_5_17
- a_1_1·b_1_2·b_5_18 + b_6_27·a_1_1 + b_2_4·b_4_12·a_1_1 + a_1_12·b_5_17
+ b_4_12·a_1_13
- b_1_02·b_5_17 + b_6_27·b_1_0 + b_2_5·b_5_17 + b_2_5·b_4_12·b_1_2 + b_2_52·b_3_8
+ a_1_12·b_5_17
- b_4_92 + b_2_52·b_1_2·b_3_8 + b_2_52·b_4_12
- a_1_13·b_5_17
- b_3_8·b_5_19 + b_6_27·b_1_22 + b_4_12·b_1_2·b_3_8 + b_4_12·b_1_24 + b_4_9·b_1_24
+ b_2_5·b_1_2·b_5_18 + b_2_5·b_1_23·b_3_8 + b_2_5·b_4_9·b_1_22 + b_2_42·b_4_12
- b_2_4·b_1_0·b_5_17 + b_2_4·b_6_27 + b_2_42·b_4_12 + b_2_4·a_1_1·b_5_17
+ b_2_42·a_1_1·b_3_8 + b_2_43·a_1_12
- b_4_9·b_5_17 + b_4_9·b_4_12·b_1_2 + b_2_5·b_4_9·b_3_8 + a_1_1·b_3_8·b_5_17
+ b_4_12·a_1_1·b_1_2·b_3_8
- b_4_12·b_5_19 + b_4_12·b_1_22·b_3_8 + b_4_122·b_1_2 + b_4_9·b_4_12·b_1_2
+ b_2_4·b_4_12·b_3_8 + a_1_1·b_3_8·b_5_17
- b_4_9·b_5_19 + b_4_9·b_1_22·b_3_8 + b_4_9·b_4_12·b_1_2 + b_2_52·b_1_22·b_3_8
+ b_2_52·b_4_12·b_1_2 + b_2_42·b_4_12·a_1_1
- b_1_26·b_3_8 + b_8_43·b_1_2 + b_4_122·b_1_2 + b_4_9·b_5_18 + b_4_9·b_1_25
+ b_2_5·b_4_12·b_3_8 + b_2_52·b_4_9·b_1_2 + a_1_1·b_3_8·b_5_18 + a_1_1·b_1_25·b_3_8 + b_4_12·a_1_1·b_1_2·b_3_8 + b_4_12·a_1_1·b_1_24
- a_1_1·b_1_25·b_3_8 + b_8_43·a_1_1 + b_4_122·a_1_1 + b_2_44·a_1_1
- b_8_43·b_1_0 + b_6_27·b_1_03 + b_2_5·b_6_27·b_1_0 + b_2_52·b_5_17
+ b_2_52·b_4_12·b_1_2 + b_2_53·b_3_8 + b_2_42·b_1_05 + b_2_43·b_1_03 + b_2_44·b_1_0
- b_5_192 + b_5_18·b_5_19 + b_5_17·b_5_19 + b_6_27·b_1_2·b_3_8 + b_6_27·b_1_24
+ b_4_12·b_1_2·b_5_18 + b_4_12·b_1_23·b_3_8 + b_4_12·b_1_26 + b_4_9·b_1_26 + b_2_5·b_3_8·b_5_18 + b_2_5·b_1_25·b_3_8 + b_2_5·b_4_12·b_1_24 + b_2_5·b_4_9·b_1_2·b_3_8 + b_2_5·b_4_9·b_1_24 + b_2_5·b_4_9·b_4_12 + b_2_43·b_4_12 + b_6_27·a_1_1·b_1_23 + b_4_12·a_1_1·b_5_18 + b_4_12·a_1_1·b_5_17 + b_4_12·a_1_1·b_1_25
- b_5_192 + b_5_17·b_5_19 + b_6_27·b_1_24 + b_4_12·b_1_23·b_3_8 + b_4_12·b_1_26
+ b_4_9·b_1_23·b_3_8 + b_4_9·b_1_26 + b_4_9·b_4_12·b_1_22 + b_2_5·b_1_25·b_3_8 + b_2_5·b_4_12·b_1_2·b_3_8 + b_2_5·b_4_12·b_1_24 + b_2_5·b_4_9·b_1_2·b_3_8 + b_2_5·b_4_9·b_1_24 + b_2_4·b_3_8·b_5_17 + b_2_43·b_4_12 + b_6_27·a_1_1·b_3_8 + b_6_27·a_1_1·b_1_23 + b_4_12·a_1_1·b_5_18 + b_4_12·a_1_1·b_5_17 + b_4_12·a_1_1·b_1_25 + b_2_42·a_1_1·b_5_17
- b_5_192 + b_5_172 + b_6_27·b_1_24 + b_4_12·b_1_26 + b_4_9·b_1_23·b_3_8
+ b_4_9·b_1_26 + b_2_5·b_1_25·b_3_8 + b_2_5·b_6_27·b_1_22 + b_2_5·b_4_9·b_1_2·b_3_8 + b_2_52·b_1_23·b_3_8 + b_2_52·b_4_12·b_1_22 + b_2_52·b_4_9·b_1_22 + b_2_53·b_1_2·b_3_8 + b_2_53·b_4_12 + b_2_4·b_4_122 + b_2_43·b_4_12 + b_6_27·a_1_1·b_1_23 + b_4_12·a_1_1·b_5_17 + b_4_12·a_1_1·b_1_25 + b_4_122·a_1_1·b_1_2 + b_2_42·a_1_1·b_5_17 + b_4_122·a_1_12 + b_2_44·a_1_12 + c_8_44·a_1_12
- b_5_192 + b_6_27·b_1_24 + b_4_12·b_1_26 + b_4_122·b_1_22 + b_4_9·b_1_23·b_3_8
+ b_4_9·b_1_26 + b_2_5·b_1_25·b_3_8 + b_2_5·b_6_27·b_1_22 + b_2_5·b_4_9·b_1_2·b_3_8 + b_2_52·b_1_2·b_5_18 + b_2_52·b_1_23·b_3_8 + b_2_52·b_4_9·b_1_22 + b_2_4·b_6_27·b_1_02 + b_2_43·b_4_12 + b_2_44·b_1_02 + b_6_27·a_1_1·b_1_23 + b_4_12·a_1_1·b_1_25 + b_2_42·a_1_1·b_5_17 + c_8_44·b_1_02
- b_4_9·b_1_2·b_5_18 + b_4_9·b_6_27 + b_2_5·b_1_25·b_3_8 + b_2_5·b_8_43
+ b_2_5·b_6_27·b_1_02 + b_2_5·b_4_122 + b_2_5·b_4_9·b_1_24 + b_2_5·b_4_9·b_4_12 + b_2_52·b_1_2·b_5_18 + b_2_52·b_1_23·b_3_8 + b_2_52·b_1_0·b_5_17 + b_2_53·b_4_9 + b_2_4·b_4_12·a_1_1·b_3_8
- b_5_192 + b_5_18·b_5_19 + b_5_182 + b_5_172 + b_8_43·b_1_22 + b_4_9·b_1_2·b_5_18
+ b_2_5·b_6_27·b_1_22 + b_2_5·b_4_12·b_1_24 + b_2_5·b_4_122 + b_2_5·b_4_9·b_1_2·b_3_8 + b_2_52·b_4_12·b_1_22 + b_2_53·b_1_2·b_3_8 + b_2_53·b_4_12 + b_2_4·b_3_8·b_5_17 + b_2_43·b_4_12 + b_4_12·a_1_1·b_5_18 + b_4_12·a_1_1·b_5_17 + b_4_12·a_1_1·b_1_22·b_3_8 + b_4_12·a_1_1·b_1_25 + b_2_4·b_4_12·a_1_1·b_3_8 + c_8_44·b_1_22
- b_5_17·b_5_19 + b_5_17·b_5_18 + b_5_172 + b_4_12·b_1_2·b_5_18 + b_4_12·b_1_23·b_3_8
+ b_4_9·b_4_12·b_1_22 + b_2_5·b_3_8·b_5_18 + b_2_5·b_6_27·b_1_22 + b_2_5·b_4_12·b_1_2·b_3_8 + b_2_5·b_4_12·b_1_24 + b_2_5·b_4_9·b_1_24 + b_2_52·b_1_23·b_3_8 + b_2_52·b_4_12·b_1_22 + b_2_52·b_4_9·b_1_22 + b_2_53·b_1_2·b_3_8 + b_2_53·b_4_12 + b_2_4·b_3_8·b_5_17 + b_8_43·a_1_1·b_1_2 + b_6_27·a_1_1·b_1_23 + b_4_12·a_1_1·b_5_18 + b_4_12·a_1_1·b_5_17 + b_4_12·a_1_1·b_1_25 + b_4_122·a_1_12 + c_8_44·a_1_1·b_1_2
- b_2_4·b_8_43 + b_2_4·b_6_27·b_1_02 + b_2_4·b_4_122 + b_2_43·b_1_04
+ b_2_44·b_1_02 + b_2_45 + b_2_42·a_1_1·b_5_17 + b_2_44·a_1_12
- b_6_27·b_5_19 + b_6_27·b_1_22·b_3_8 + b_4_12·b_6_27·b_1_2 + b_4_9·b_6_27·b_1_2
+ b_2_4·b_6_27·b_1_03 + b_2_42·b_4_12·b_3_8 + b_2_44·b_1_03 + b_6_27·a_1_1·b_1_2·b_3_8 + b_2_43·b_4_12·a_1_1 + c_8_44·b_1_03 + b_2_5·c_8_44·b_1_0
- b_6_27·b_5_19 + b_6_27·b_5_17 + b_6_27·b_1_22·b_3_8 + b_4_9·b_6_27·b_1_2
+ b_2_5·b_6_27·b_3_8 + b_2_4·b_4_12·b_5_17 + b_2_42·b_4_12·b_3_8 + b_8_43·a_1_1·b_1_22 + b_6_27·a_1_1·b_1_24 + b_4_12·a_1_1·b_1_26 + b_2_4·a_1_1·b_3_8·b_5_17 + b_2_4·b_4_122·a_1_1 + b_2_43·b_4_12·a_1_1 + c_8_44·a_1_1·b_1_22
- b_8_43·b_3_8 + b_8_43·b_1_23 + b_6_27·b_5_19 + b_6_27·b_5_18 + b_6_27·b_5_17
+ b_4_12·b_6_27·b_1_2 + b_4_122·b_3_8 + b_4_9·b_6_27·b_1_2 + b_4_9·b_4_12·b_3_8 + b_2_5·b_8_43·b_1_2 + b_2_5·b_6_27·b_3_8 + b_2_5·b_4_12·b_1_22·b_3_8 + b_2_5·b_4_122·b_1_2 + b_2_5·b_4_9·b_5_18 + b_2_5·b_4_9·b_1_25 + b_2_52·b_6_27·b_1_2 + b_2_52·b_4_12·b_3_8 + b_2_52·b_4_9·b_1_23 + b_2_53·b_5_18 + b_2_53·b_1_22·b_3_8 + b_2_53·b_4_12·b_1_2 + b_2_42·b_4_12·b_3_8 + b_2_44·b_3_8 + b_6_27·a_1_1·b_1_24 + b_2_4·b_4_122·a_1_1 + b_2_43·b_4_12·a_1_1 + b_4_12·a_1_12·b_5_17 + b_4_122·a_1_13 + c_8_44·b_1_23 + b_2_5·c_8_44·b_1_2 + c_8_44·a_1_13
- b_6_27·b_1_2·b_5_18 + b_6_272 + b_4_9·b_3_8·b_5_18 + b_4_9·b_6_27·b_1_22
+ b_2_5·b_8_43·b_1_22 + b_2_5·b_6_27·b_1_2·b_3_8 + b_2_5·b_6_27·b_1_24 + b_2_5·b_4_12·b_1_26 + b_2_5·b_4_9·b_1_26 + b_2_5·b_4_9·b_6_27 + b_2_52·b_3_8·b_5_18 + b_2_52·b_4_12·b_1_2·b_3_8 + b_2_52·b_4_12·b_1_24 + b_2_52·b_4_9·b_1_24 + b_2_53·b_1_2·b_5_18 + b_2_53·b_1_23·b_3_8 + b_2_53·b_4_12·b_1_22 + b_2_54·b_1_2·b_3_8 + b_2_4·b_6_27·b_1_04 + b_2_42·b_4_122 + b_2_44·b_1_04 + b_2_4·b_4_12·a_1_1·b_5_17 + c_8_44·b_1_04 + b_2_5·c_8_44·b_1_22 + b_2_52·c_8_44
- b_4_9·b_1_25·b_3_8 + b_4_9·b_8_43 + b_4_9·b_4_122 + b_2_5·b_4_12·b_1_2·b_5_18
+ b_2_5·b_4_12·b_6_27 + b_2_5·b_4_9·b_4_12·b_1_22 + b_2_52·b_3_8·b_5_18 + b_2_52·b_1_25·b_3_8 + b_2_52·b_4_12·b_1_24 + b_2_52·b_4_122 + b_2_52·b_4_9·b_4_12 + b_2_54·b_1_2·b_3_8 + b_2_54·b_4_12 + b_2_44·a_1_1·b_3_8
- b_8_43·b_5_17 + b_4_12·b_8_43·b_1_2 + b_4_122·b_5_17 + b_4_123·b_1_2
+ b_2_5·b_8_43·b_1_23 + b_2_5·b_6_27·b_5_18 + b_2_5·b_6_27·b_1_22·b_3_8 + b_2_5·b_4_12·b_6_27·b_1_2 + b_2_5·b_4_9·b_4_12·b_3_8 + b_2_52·b_8_43·b_1_2 + b_2_52·b_4_12·b_1_22·b_3_8 + b_2_52·b_4_122·b_1_2 + b_2_52·b_4_9·b_5_18 + b_2_52·b_4_9·b_1_25 + b_2_53·b_6_27·b_1_2 + b_2_53·b_4_12·b_3_8 + b_2_53·b_4_9·b_1_23 + b_2_54·b_5_18 + b_2_54·b_1_22·b_3_8 + b_2_54·b_4_12·b_1_2 + b_2_4·b_6_27·b_1_05 + b_2_42·b_6_27·b_1_03 + b_2_43·b_6_27·b_1_0 + b_2_44·b_5_17 + b_2_44·b_1_05 + b_6_27·a_1_1·b_1_23·b_3_8 + b_4_12·b_8_43·a_1_1 + b_4_123·a_1_1 + b_2_42·b_4_122·a_1_1 + b_2_44·b_4_12·a_1_1 + c_8_44·b_1_05 + b_2_5·c_8_44·b_1_23 + b_2_52·c_8_44·b_1_2
- b_8_43·b_5_18 + b_8_43·b_5_17 + b_6_27·b_1_24·b_3_8 + b_4_12·b_1_2·b_3_8·b_5_18
+ b_4_12·b_8_43·b_1_2 + b_4_12·b_6_27·b_3_8 + b_4_122·b_5_18 + b_4_122·b_5_17 + b_4_123·b_1_2 + b_4_9·b_6_27·b_3_8 + b_4_9·b_6_27·b_1_23 + b_4_9·b_4_12·b_1_22·b_3_8 + b_2_5·b_6_27·b_1_22·b_3_8 + b_2_5·b_6_27·b_1_25 + b_2_5·b_4_12·b_1_24·b_3_8 + b_2_5·b_4_12·b_1_27 + b_2_5·b_4_122·b_3_8 + b_2_5·b_4_9·b_1_27 + b_2_5·b_4_9·b_6_27·b_1_2 + b_2_5·b_4_9·b_4_12·b_1_23 + b_2_52·b_1_2·b_3_8·b_5_18 + b_2_52·b_8_43·b_1_2 + b_2_52·b_6_27·b_1_23 + b_2_52·b_4_12·b_5_18 + b_2_52·b_4_122·b_1_2 + b_2_52·b_4_9·b_5_18 + b_2_52·b_4_9·b_1_25 + b_2_53·b_1_24·b_3_8 + b_2_53·b_4_12·b_1_23 + b_2_53·b_4_9·b_3_8 + b_2_53·b_4_9·b_1_23 + b_2_54·b_4_9·b_1_2 + b_2_4·b_6_27·b_1_05 + b_2_4·b_4_122·b_3_8 + b_2_42·b_6_27·b_1_03 + b_2_43·b_6_27·b_1_0 + b_2_44·b_5_18 + b_2_44·b_5_17 + b_2_44·b_1_05 + b_6_27·a_1_1·b_1_23·b_3_8 + b_6_27·a_1_1·b_1_26 + b_6_272·a_1_1 + b_4_12·a_1_1·b_3_8·b_5_17 + b_4_12·a_1_1·b_1_28 + b_2_42·b_4_122·a_1_1 + c_8_44·b_1_05 + b_4_9·c_8_44·b_1_2 + c_8_44·a_1_1·b_1_2·b_3_8
- b_8_43·b_5_19 + b_8_43·b_5_17 + b_6_27·b_1_27 + b_4_12·b_1_29 + b_4_122·b_5_17
+ b_4_122·b_1_22·b_3_8 + b_4_123·b_1_2 + b_4_9·b_1_29 + b_4_9·b_8_43·b_1_2 + b_4_9·b_6_27·b_3_8 + b_2_5·b_8_43·b_1_23 + b_2_5·b_4_12·b_1_27 + b_2_5·b_4_12·b_6_27·b_1_2 + b_2_5·b_4_9·b_1_24·b_3_8 + b_2_5·b_4_9·b_6_27·b_1_2 + b_2_5·b_4_9·b_4_12·b_1_23 + b_2_52·b_1_2·b_3_8·b_5_18 + b_2_52·b_8_43·b_1_2 + b_2_52·b_6_27·b_1_23 + b_2_52·b_4_12·b_5_18 + b_2_52·b_4_122·b_1_2 + b_2_53·b_4_9·b_3_8 + b_2_54·b_4_9·b_1_2 + b_2_4·b_4_122·b_3_8 + b_2_44·b_5_18 + b_2_45·b_3_8 + b_6_27·a_1_1·b_1_23·b_3_8 + b_6_27·a_1_1·b_1_26 + b_6_272·a_1_1 + b_4_12·a_1_1·b_3_8·b_5_17 + b_4_12·a_1_1·b_1_28 + b_4_122·a_1_1·b_1_24 + b_2_42·a_1_1·b_3_8·b_5_17 + b_2_42·b_4_122·a_1_1
- b_6_27·b_1_25·b_3_8 + b_6_27·b_8_43 + b_4_122·b_6_27 + b_4_9·b_8_43·b_1_22
+ b_4_9·b_6_27·b_1_2·b_3_8 + b_4_9·b_4_12·b_1_26 + b_4_9·b_4_12·b_6_27 + b_2_5·b_4_12·b_3_8·b_5_18 + b_2_5·b_4_9·b_6_27·b_1_22 + b_2_52·b_6_27·b_1_2·b_3_8 + b_2_52·b_6_27·b_1_24 + b_2_52·b_4_12·b_6_27 + b_2_52·b_4_9·b_6_27 + b_2_52·b_4_9·b_4_12·b_1_22 + b_2_53·b_1_25·b_3_8 + b_2_53·b_6_27·b_1_22 + b_2_53·b_4_122 + b_2_53·b_4_9·b_1_24 + b_2_54·b_1_2·b_5_18 + b_2_54·b_1_23·b_3_8 + b_2_54·b_4_12·b_1_22 + b_2_54·b_4_9·b_1_22 + b_2_4·b_6_27·b_1_06 + b_2_42·b_6_27·b_1_04 + b_2_43·b_6_27·b_1_02 + b_2_44·b_1_06 + b_2_44·b_6_27 + b_6_27·a_1_1·b_1_27 + b_6_272·a_1_1·b_1_2 + b_4_12·a_1_1·b_1_29 + b_4_12·b_8_43·a_1_1·b_1_2 + b_4_122·a_1_1·b_1_22·b_3_8 + b_4_123·a_1_1·b_1_2 + b_2_4·b_4_122·a_1_1·b_3_8 + b_2_42·b_4_12·a_1_1·b_5_17 + c_8_44·b_1_06 + b_4_9·c_8_44·b_1_22 + b_2_5·c_8_44·b_1_04 + b_2_5·b_4_9·c_8_44 + b_2_52·c_8_44·b_1_22 + c_8_44·a_1_1·b_1_22·b_3_8
- b_8_432 + b_6_27·b_8_43·b_1_22 + b_6_272·b_1_2·b_3_8 + b_6_272·b_1_24
+ b_4_12·b_6_272 + b_4_122·b_1_25·b_3_8 + b_4_122·b_1_28 + b_4_123·b_1_24 + b_4_124 + b_4_9·b_6_27·b_1_23·b_3_8 + b_4_9·b_6_272 + b_4_9·b_4_12·b_6_27·b_1_22 + b_4_9·b_4_122·b_1_2·b_3_8 + b_4_9·b_4_122·b_1_24 + b_2_5·b_6_27·b_1_28 + b_2_5·b_6_27·b_8_43 + b_2_5·b_4_12·b_1_210 + b_2_5·b_4_12·b_6_27·b_1_2·b_3_8 + b_2_5·b_4_12·b_6_27·b_1_24 + b_2_5·b_4_122·b_1_2·b_5_18 + b_2_5·b_4_122·b_1_26 + b_2_5·b_4_122·b_6_27 + b_2_5·b_4_9·b_1_210 + b_2_5·b_4_9·b_8_43·b_1_22 + b_2_5·b_4_9·b_6_27·b_1_2·b_3_8 + b_2_5·b_4_9·b_6_27·b_1_24 + b_2_5·b_4_9·b_4_12·b_1_26 + b_2_5·b_4_9·b_4_122·b_1_22 + b_2_52·b_6_27·b_1_26 + b_2_52·b_6_272 + b_2_52·b_4_12·b_1_25·b_3_8 + b_2_52·b_4_12·b_1_28 + b_2_52·b_4_12·b_8_43 + b_2_52·b_4_122·b_1_24 + b_2_52·b_4_9·b_6_27·b_1_22 + b_2_52·b_4_9·b_4_122 + b_2_53·b_8_43·b_1_22 + b_2_53·b_4_12·b_1_2·b_5_18 + b_2_53·b_4_12·b_1_23·b_3_8 + b_2_53·b_4_122·b_1_22 + b_2_53·b_4_9·b_1_26 + b_2_53·b_4_9·b_4_12·b_1_22 + b_2_54·b_4_12·b_1_24 + b_2_54·b_4_122 + b_2_55·b_1_2·b_5_18 + b_2_56·b_4_12 + b_2_4·b_6_27·b_1_08 + b_2_42·b_4_123 + b_2_46·b_1_04 + b_2_48 + b_6_27·b_8_43·a_1_1·b_1_2 + b_4_12·b_6_27·a_1_1·b_5_18 + b_4_12·b_6_27·a_1_1·b_1_25 + b_4_122·b_6_27·a_1_1·b_1_2 + b_2_4·b_4_122·a_1_1·b_5_17 + b_2_42·b_4_122·a_1_1·b_3_8 + c_8_44·b_1_25·b_3_8 + c_8_44·b_1_08 + b_4_12·c_8_44·b_1_24 + b_2_5·c_8_44·b_1_06 + b_2_53·c_8_44·b_1_22 + b_2_54·c_8_44 + c_8_44·a_1_1·b_1_24·b_3_8 + b_4_12·c_8_44·a_1_1·b_1_23
Data used for Benson′s test
- Benson′s completion test succeeded in degree 17.
- However, the last relation was already found in degree 16 and the last generator in degree 8.
- The following is a filter regular homogeneous system of parameters:
- c_8_44, a Duflot regular element of degree 8
- b_1_24 + b_1_04 + b_4_12 + b_2_52 + b_2_42, an element of degree 4
- b_4_12·b_1_22 + b_2_5·b_4_12 + b_2_52·b_1_22 + b_2_52·b_1_02 + b_2_4·b_4_12
+ b_2_42·b_1_02, an element of degree 6
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 14, 16].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_12 → 0, an element of degree 4
- b_5_17 → 0, an element of degree 5
- b_5_18 → 0, an element of degree 5
- b_5_19 → 0, an element of degree 5
- b_6_27 → 0, an element of degree 6
- b_8_43 → 0, an element of degree 8
- c_8_44 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_12 → 0, an element of degree 4
- b_5_17 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_18 → 0, an element of degree 5
- b_5_19 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_27 → c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_12·c_1_22
+ c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_8_43 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_44 → c_1_28 + c_1_14·c_1_24 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22
+ c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_12 → 0, an element of degree 4
- b_5_17 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_18 → 0, an element of degree 5
- b_5_19 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_27 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_8_43 → c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_14·c_1_22
+ c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_14, an element of degree 8
- c_8_44 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → c_1_12, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_3_8 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_12 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_17 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_18 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_19 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_6_27 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_8_43 → c_1_28 + c_1_14·c_1_24 + c_1_18, an element of degree 8
- c_8_44 → c_1_28 + c_1_16·c_1_22 + c_1_18 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_8 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_2·c_1_3 + c_1_02·c_1_1, an element of degree 3
- b_4_9 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- b_4_12 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- b_5_17 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_12·c_1_2·c_1_32
+ c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2, an element of degree 5
- b_5_18 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_1, an element of degree 5
- b_5_19 → c_1_1·c_1_34 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_2·c_1_32 + c_1_13·c_1_32
+ c_1_13·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_13, an element of degree 5
- b_6_27 → c_1_24·c_1_32 + c_1_25·c_1_3 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_23·c_1_32
+ c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_13·c_1_2·c_1_32 + c_1_14·c_1_32 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_13·c_1_2 + c_1_03·c_1_1·c_1_22 + c_1_03·c_1_12·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_8_43 → c_1_38 + c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
+ c_1_27·c_1_3 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_25·c_1_32 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_16 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_13·c_1_22 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2, an element of degree 8
- c_8_44 → c_1_38 + c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33
+ c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_23·c_1_33 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_13·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2 + c_1_06·c_1_12 + c_1_08, an element of degree 8
|