Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 933 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t9 − 2·t8 + 2·t7 + 3·t5 + 2·t2 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- b_4_8, an element of degree 4
- b_5_9, an element of degree 5
- b_5_10, an element of degree 5
- b_5_11, an element of degree 5
- b_5_12, an element of degree 5
- b_5_13, an element of degree 5
- c_8_25, a Duflot regular element of degree 8
Ring relations
There are 42 minimal relations of maximal degree 11:
- a_1_1·b_1_0
- a_1_2·b_1_0
- a_1_23 + a_1_13
- b_2_4·a_1_2 + a_1_1·a_1_22 + a_1_12·a_1_2 + a_1_13
- b_2_5·a_1_1 + a_1_1·a_1_22 + a_1_12·a_1_2 + a_1_13
- a_1_14
- a_1_13·a_1_2
- b_2_4·b_2_5 + a_1_12·a_1_22
- b_4_8·b_1_0
- b_1_0·b_5_9
- a_1_2·b_5_9 + a_1_1·b_5_10 + a_1_1·b_5_9 + b_4_8·a_1_22 + b_4_8·a_1_12
+ b_2_52·a_1_22
- b_1_0·b_5_10
- a_1_1·b_5_11 + a_1_1·b_5_9
- a_1_2·b_5_11 + a_1_2·b_5_9 + b_2_52·a_1_22
- b_1_0·b_5_12 + b_1_0·b_5_11 + b_2_42·a_1_12
- a_1_2·b_5_12 + b_4_8·a_1_22 + b_2_52·a_1_22
- a_1_1·b_5_13 + a_1_1·b_5_9 + b_4_8·a_1_1·a_1_2
- b_1_0·b_5_13 + b_2_52·a_1_22
- b_2_5·b_5_9 + b_2_4·b_5_10 + b_2_4·b_5_9 + b_2_5·b_4_8·a_1_2 + b_2_53·a_1_2
+ b_2_4·b_4_8·a_1_1 + b_4_8·a_1_13
- b_2_5·b_5_9 + b_2_5·b_4_8·a_1_2 + b_2_53·a_1_2 + a_1_1·a_1_2·b_5_10 + a_1_12·b_5_9
+ b_4_8·a_1_1·a_1_22 + b_4_8·a_1_13
- b_2_5·b_5_9 + b_2_5·b_4_8·a_1_2 + b_2_53·a_1_2 + a_1_22·b_5_10 + a_1_12·b_5_10
+ a_1_12·b_5_9 + b_4_8·a_1_1·a_1_22
- b_2_5·b_5_12 + b_2_5·b_5_11 + b_2_5·b_5_9 + b_2_5·b_4_8·a_1_2
- a_1_12·b_5_12 + b_4_8·a_1_12·a_1_2
- b_2_4·b_5_13 + b_2_4·b_5_9 + b_4_8·a_1_1·a_1_22 + b_4_8·a_1_12·a_1_2 + b_4_8·a_1_13
- b_2_5·b_5_9 + b_2_5·b_4_8·a_1_2 + b_2_53·a_1_2 + a_1_22·b_5_13 + a_1_12·b_5_10
+ b_4_8·a_1_12·a_1_2
- b_2_4·b_4_8·a_1_12 + a_1_13·b_5_9 + b_4_8·a_1_12·a_1_22
- b_2_5·b_4_8·a_1_22 + b_2_4·b_4_8·a_1_12 + a_1_13·b_5_10
- b_5_122 + b_5_112 + b_5_92 + b_2_43·b_4_8 + b_2_42·a_1_1·b_5_12
+ b_2_42·a_1_1·b_5_9 + b_4_82·a_1_22 + b_2_44·a_1_12
- b_5_11·b_5_12 + b_5_112 + b_5_10·b_5_12 + b_5_10·b_5_11 + b_5_9·b_5_10 + b_5_92
+ b_4_8·a_1_2·b_5_10 + b_4_8·a_1_1·b_5_10 + b_4_8·a_1_1·b_5_9 + b_2_42·a_1_1·b_5_9 + b_4_82·a_1_22 + b_4_82·a_1_12 + b_2_54·a_1_22
- b_5_10·b_5_12 + b_5_10·b_5_11 + b_5_9·b_5_12 + b_5_9·b_5_10 + b_4_8·a_1_2·b_5_10
+ b_4_8·a_1_1·b_5_10 + b_4_8·a_1_1·b_5_9 + b_4_82·a_1_22 + b_4_82·a_1_12 + b_2_54·a_1_22
- b_5_9·b_5_11 + b_5_92 + b_4_8·a_1_1·b_5_12 + b_4_82·a_1_1·a_1_2 + b_2_54·a_1_22
- b_5_132 + b_5_92 + b_2_53·b_4_8 + b_2_52·a_1_2·b_5_13 + b_2_52·a_1_2·b_5_10
+ b_4_82·a_1_22 + b_2_54·a_1_22
- b_5_132 + b_5_12·b_5_13 + b_5_10·b_5_12 + b_5_9·b_5_11 + b_2_53·b_4_8
+ b_4_8·a_1_2·b_5_10 + b_4_8·a_1_1·b_5_10 + b_4_8·a_1_1·b_5_9 + b_2_52·a_1_2·b_5_10 + b_4_82·a_1_22 + b_4_82·a_1_12 + b_2_54·a_1_22
- b_5_11·b_5_13 + b_5_10·b_5_11 + b_5_9·b_5_10 + b_5_92 + b_4_8·a_1_1·b_5_10
+ b_4_8·a_1_1·b_5_9 + b_4_82·a_1_22 + b_4_82·a_1_12
- b_5_132 + b_5_10·b_5_11 + b_5_9·b_5_13 + b_5_9·b_5_11 + b_5_9·b_5_10 + b_5_92
+ b_2_53·b_4_8 + b_4_8·a_1_1·b_5_10 + b_4_8·a_1_1·b_5_9 + b_4_82·a_1_12 + b_2_54·a_1_22
- b_5_10·b_5_11 + b_5_9·b_5_11 + b_5_9·b_5_10 + b_5_92 + b_4_8·a_1_2·b_5_13
+ b_4_8·a_1_1·b_5_10 + b_4_8·a_1_1·b_5_9 + b_2_52·a_1_2·b_5_10 + b_4_82·a_1_12 + b_2_54·a_1_22
- b_5_92 + b_2_4·b_4_82 + b_4_8·a_1_1·b_5_9 + b_4_82·a_1_22 + b_4_82·a_1_1·a_1_2
+ b_2_54·a_1_22 + c_8_25·a_1_12
- b_5_112 + b_5_92 + b_1_05·b_5_11 + b_2_53·b_1_04 + b_2_4·b_1_03·b_5_11
+ b_2_54·a_1_22 + c_8_25·b_1_02
- b_5_9·b_5_10 + b_5_92 + b_4_8·a_1_2·b_5_10 + b_4_8·a_1_1·b_5_9 + b_2_52·a_1_2·b_5_10
+ b_4_82·a_1_12 + b_2_54·a_1_22 + c_8_25·a_1_1·a_1_2
- b_5_102 + b_5_92 + b_2_5·b_4_82 + b_4_8·a_1_2·b_5_10 + b_4_8·a_1_1·b_5_10
+ b_4_8·a_1_1·b_5_9 + b_4_82·a_1_22 + b_4_82·a_1_1·a_1_2 + c_8_25·a_1_22
- b_2_4·b_4_8·b_5_11 + b_2_4·b_4_8·b_5_9 + a_1_1·b_5_9·b_5_12 + b_4_8·a_1_12·b_5_10
+ b_4_8·a_1_12·b_5_9 + b_4_82·a_1_1·a_1_22 + b_4_82·a_1_13
- b_2_5·b_4_8·b_5_11 + a_1_2·b_5_10·b_5_13 + b_2_5·b_4_82·a_1_2
+ b_4_8·a_1_1·a_1_2·b_5_10 + b_4_8·a_1_12·b_5_9 + b_4_82·a_1_1·a_1_22 + b_4_82·a_1_13 + c_8_25·a_1_1·a_1_22 + c_8_25·a_1_12·a_1_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- However, the last relation was already found in degree 11 and the last generator in degree 8.
- The following is a filter regular homogeneous system of parameters:
- c_8_25, a Duflot regular element of degree 8
- b_1_04 + b_4_8 + b_2_52 + b_2_42, an element of degree 4
- b_2_5 + b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- b_5_9 → 0, an element of degree 5
- b_5_10 → 0, an element of degree 5
- b_5_11 → 0, an element of degree 5
- b_5_12 → 0, an element of degree 5
- b_5_13 → 0, an element of degree 5
- c_8_25 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_2_4 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- b_5_9 → 0, an element of degree 5
- b_5_10 → 0, an element of degree 5
- b_5_11 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_12 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_13 → 0, an element of degree 5
- c_8_25 → c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24
+ c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_4_8 → 0, an element of degree 4
- b_5_9 → 0, an element of degree 5
- b_5_10 → 0, an element of degree 5
- b_5_11 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_12 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_13 → 0, an element of degree 5
- c_8_25 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → c_1_12, an element of degree 2
- b_2_5 → 0, an element of degree 2
- b_4_8 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_9 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_10 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_11 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_12 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_5_13 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- c_8_25 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_12, an element of degree 2
- b_4_8 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_9 → 0, an element of degree 5
- b_5_10 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_11 → 0, an element of degree 5
- b_5_12 → 0, an element of degree 5
- b_5_13 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- c_8_25 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|