Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 934 of order 128
General information on the group
- The group is also known as Syl2(J2), the Sylow 2-subgroup of Hall-Janko Group J_2.
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
t10 − t9 + 2·t8 − t6 + t5 + t2 + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 10:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_2_5, a nilpotent element of degree 2
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_4_14, an element of degree 4
- b_5_20, an element of degree 5
- b_5_21, an element of degree 5
- c_8_49, a Duflot regular element of degree 8
- b_10_83, an element of degree 10
Ring relations
There are 33 minimal relations of maximal degree 20:
- b_1_0·b_1_1
- b_1_0·b_1_2
- a_2_4·b_1_1
- a_2_5·b_1_2
- a_2_5·b_1_1 + a_2_4·b_1_2
- a_2_52 + a_2_4·a_2_5 + a_2_42
- b_1_0·b_3_8 + a_2_42
- b_1_0·b_3_9 + a_2_52
- a_2_4·b_3_8
- a_2_5·b_3_9
- a_2_5·b_3_8 + a_2_4·b_3_9
- b_4_14·b_1_0
- b_3_92 + b_1_2·b_5_20 + b_1_23·b_3_9 + b_1_1·b_1_22·b_3_8 + b_1_12·b_1_2·b_3_9
+ b_1_13·b_3_9 + b_4_14·b_1_22 + b_4_14·b_1_12 + a_2_5·b_4_14
- b_1_0·b_5_20 + a_2_4·b_1_04 + a_2_4·a_2_5·b_1_02
- b_3_92 + b_1_2·b_5_21 + b_1_23·b_3_9 + b_1_1·b_5_20 + b_1_12·b_1_2·b_3_9
+ b_1_13·b_3_9 + b_4_14·b_1_22 + b_4_14·b_1_12 + a_2_5·b_4_14
- b_1_0·b_5_21 + a_2_5·b_1_04 + a_2_4·a_2_5·b_1_02 + a_2_42·b_1_02 + a_2_42·a_2_5
- b_3_82 + b_1_1·b_5_21 + b_1_1·b_5_20 + b_1_1·b_1_22·b_3_9 + b_1_1·b_1_22·b_3_8
+ b_1_12·b_1_2·b_3_9 + b_1_13·b_3_8 + b_4_14·b_1_22 + a_2_4·b_4_14
- a_2_5·b_5_20 + a_2_4·b_4_14·b_1_2 + a_2_4·a_2_5·b_1_03 + a_2_42·a_2_5·b_1_0
- a_2_5·b_5_21 + a_2_4·b_5_20 + a_2_4·a_2_5·b_1_03 + a_2_42·a_2_5·b_1_0
- a_2_4·b_5_21 + a_2_4·b_5_20 + a_2_4·b_4_14·b_1_2 + a_2_4·a_2_5·b_1_03
+ a_2_42·b_1_03
- b_5_202 + b_1_22·b_3_8·b_5_20 + b_1_24·b_3_8·b_3_9 + b_1_25·b_5_20 + b_1_27·b_3_9
+ b_1_1·b_1_2·b_3_9·b_5_20 + b_1_1·b_1_2·b_3_8·b_5_20 + b_1_1·b_1_24·b_5_20 + b_1_1·b_1_26·b_3_9 + b_1_12·b_1_25·b_3_9 + b_1_13·b_1_22·b_5_20 + b_1_13·b_1_24·b_3_9 + b_1_14·b_1_2·b_5_20 + b_1_14·b_1_23·b_3_8 + b_1_15·b_1_22·b_3_9 + b_1_15·b_1_22·b_3_8 + b_4_14·b_1_2·b_5_20 + b_4_14·b_1_23·b_3_8 + b_4_14·b_1_26 + b_4_14·b_1_1·b_1_22·b_3_9 + b_4_14·b_1_1·b_1_22·b_3_8 + b_4_14·b_1_14·b_1_22 + a_2_5·b_4_142 + a_2_42·b_1_06 + c_8_49·b_1_22
- b_5_20·b_5_21 + b_5_202 + b_1_1·b_1_23·b_3_8·b_3_9 + b_1_1·b_1_24·b_5_20
+ b_1_1·b_1_26·b_3_9 + b_1_12·b_3_9·b_5_20 + b_1_12·b_3_8·b_5_20 + b_1_12·b_1_23·b_5_20 + b_1_12·b_1_25·b_3_9 + b_1_13·b_1_24·b_3_9 + b_1_14·b_1_2·b_5_20 + b_1_14·b_1_23·b_3_9 + b_1_15·b_5_20 + b_1_15·b_1_22·b_3_8 + b_1_16·b_1_2·b_3_9 + b_1_16·b_1_2·b_3_8 + b_4_14·b_1_1·b_5_20 + b_4_14·b_1_1·b_1_22·b_3_8 + b_4_14·b_1_1·b_1_25 + b_4_14·b_1_12·b_1_2·b_3_9 + b_4_14·b_1_12·b_1_2·b_3_8 + b_4_14·b_1_15·b_1_2 + a_2_5·b_4_142 + a_2_4·b_4_142 + a_2_4·a_2_5·b_1_06 + a_2_42·b_1_06 + c_8_49·b_1_1·b_1_2
- b_5_212 + b_5_202 + b_1_12·b_3_9·b_5_21 + b_1_12·b_3_9·b_5_20
+ b_1_12·b_3_8·b_5_21 + b_1_12·b_1_22·b_3_8·b_3_9 + b_1_12·b_1_23·b_5_20 + b_1_12·b_1_25·b_3_9 + b_1_13·b_1_2·b_3_8·b_3_9 + b_1_13·b_1_22·b_5_20 + b_1_13·b_1_24·b_3_8 + b_1_14·b_1_2·b_5_20 + b_1_14·b_1_23·b_3_9 + b_1_15·b_5_21 + b_1_15·b_5_20 + b_1_16·b_1_2·b_3_8 + b_1_17·b_3_9 + b_1_17·b_3_8 + b_4_14·b_1_1·b_5_21 + b_4_14·b_1_1·b_5_20 + b_4_14·b_1_13·b_3_9 + b_4_14·b_1_13·b_3_8 + b_4_14·b_1_13·b_1_23 + b_4_14·b_1_16 + a_2_4·b_4_142 + a_2_4·a_2_5·b_1_06 + c_8_49·b_1_12
- b_3_8·b_3_9·b_5_20 + b_1_23·b_3_9·b_5_20 + b_1_23·b_3_8·b_5_20 + b_1_26·b_5_20
+ b_1_28·b_3_9 + b_1_28·b_3_8 + b_1_1·b_1_22·b_3_9·b_5_20 + b_1_1·b_1_22·b_3_8·b_5_20 + b_1_1·b_1_24·b_3_8·b_3_9 + b_1_1·b_1_25·b_5_20 + b_1_1·b_1_27·b_3_9 + b_1_12·b_1_2·b_3_8·b_5_20 + b_1_12·b_1_26·b_3_9 + b_1_12·b_1_26·b_3_8 + b_1_13·b_1_23·b_5_20 + b_1_15·b_1_23·b_3_9 + b_1_15·b_1_23·b_3_8 + b_1_16·b_5_20 + b_1_16·b_1_22·b_3_9 + b_1_16·b_1_22·b_3_8 + b_1_17·b_1_2·b_3_9 + b_1_17·b_1_2·b_3_8 + b_10_83·b_1_2 + b_4_14·b_1_2·b_3_8·b_3_9 + b_4_14·b_1_22·b_5_20 + b_4_14·b_1_24·b_3_8 + b_4_14·b_1_27 + b_4_14·b_1_1·b_1_2·b_5_20 + b_4_14·b_1_1·b_1_23·b_3_9 + b_4_14·b_1_1·b_1_26 + b_4_14·b_1_12·b_5_20 + b_4_14·b_1_13·b_1_2·b_3_8 + b_4_14·b_1_14·b_1_23 + b_4_142·b_1_1·b_1_22 + b_4_142·b_1_12·b_1_2 + a_2_4·b_4_14·b_5_20 + a_2_4·b_4_142·b_1_2 + c_8_49·b_1_23 + c_8_49·b_1_12·b_1_2 + a_2_4·c_8_49·b_1_2
- b_10_83·b_1_0 + a_2_42·b_1_07 + c_8_49·b_1_03 + a_2_4·c_8_49·b_1_0
- b_3_8·b_3_9·b_5_21 + b_3_8·b_3_9·b_5_20 + b_1_1·b_1_22·b_3_9·b_5_20
+ b_1_1·b_1_22·b_3_8·b_5_20 + b_1_1·b_1_25·b_5_20 + b_1_1·b_1_27·b_3_9 + b_1_1·b_1_27·b_3_8 + b_1_12·b_1_2·b_3_9·b_5_20 + b_1_12·b_1_2·b_3_8·b_5_20 + b_1_13·b_3_9·b_5_20 + b_1_13·b_3_8·b_5_20 + b_1_13·b_1_22·b_3_8·b_3_9 + b_1_13·b_1_23·b_5_20 + b_1_14·b_1_2·b_3_8·b_3_9 + b_1_14·b_1_22·b_5_20 + b_1_14·b_1_24·b_3_9 + b_1_14·b_1_24·b_3_8 + b_1_16·b_5_21 + b_1_16·b_5_20 + b_1_16·b_1_22·b_3_8 + b_1_17·b_1_2·b_3_9 + b_1_18·b_3_9 + b_1_18·b_3_8 + b_10_83·b_1_1 + b_4_14·b_1_1·b_3_8·b_3_9 + b_4_14·b_1_1·b_1_2·b_5_20 + b_4_14·b_1_1·b_1_23·b_3_9 + b_4_14·b_1_1·b_1_23·b_3_8 + b_4_14·b_1_1·b_1_26 + b_4_14·b_1_12·b_5_21 + b_4_14·b_1_12·b_1_22·b_3_9 + b_4_14·b_1_13·b_1_2·b_3_8 + b_4_14·b_1_13·b_1_24 + b_4_14·b_1_14·b_3_8 + b_4_14·b_1_14·b_1_23 + b_4_142·b_1_12·b_1_2 + b_4_142·b_1_13 + a_2_4·b_4_14·b_5_20 + a_2_4·b_4_142·b_1_2 + c_8_49·b_1_1·b_1_22 + c_8_49·b_1_13
- a_2_5·b_10_83 + a_2_42·a_2_5·b_1_06 + a_2_5·c_8_49·b_1_02 + a_2_4·a_2_5·c_8_49
- a_2_4·b_10_83 + a_2_4·c_8_49·b_1_02 + a_2_42·c_8_49
- b_1_25·b_3_9·b_5_20 + b_1_27·b_3_8·b_3_9 + b_1_28·b_5_20 + b_1_210·b_3_9
+ b_1_210·b_3_8 + b_1_1·b_1_24·b_3_9·b_5_20 + b_1_1·b_1_26·b_3_8·b_3_9 + b_1_1·b_1_29·b_3_9 + b_1_1·b_1_29·b_3_8 + b_1_12·b_1_23·b_3_9·b_5_20 + b_1_12·b_1_25·b_3_8·b_3_9 + b_1_12·b_1_28·b_3_9 + b_1_13·b_1_22·b_3_8·b_5_20 + b_1_13·b_1_24·b_3_8·b_3_9 + b_1_13·b_1_25·b_5_20 + b_1_14·b_1_2·b_3_9·b_5_20 + b_1_14·b_1_23·b_3_8·b_3_9 + b_1_14·b_1_26·b_3_9 + b_1_15·b_3_8·b_5_21 + b_1_15·b_3_8·b_5_20 + b_1_15·b_1_25·b_3_8 + b_1_16·b_1_22·b_5_20 + b_1_16·b_1_24·b_3_9 + b_1_16·b_1_24·b_3_8 + b_1_17·b_1_2·b_5_20 + b_1_18·b_5_21 + b_1_19·b_1_2·b_3_9 + b_1_19·b_1_2·b_3_8 + b_1_110·b_3_9 + b_1_110·b_3_8 + b_10_83·b_3_8 + b_10_83·b_1_23 + b_4_14·b_1_2·b_3_9·b_5_20 + b_4_14·b_1_2·b_3_8·b_5_20 + b_4_14·b_1_23·b_3_8·b_3_9 + b_4_14·b_1_1·b_3_8·b_5_21 + b_4_14·b_1_1·b_1_23·b_5_20 + b_4_14·b_1_1·b_1_25·b_3_8 + b_4_14·b_1_12·b_1_22·b_5_20 + b_4_14·b_1_12·b_1_27 + b_4_14·b_1_13·b_1_2·b_5_20 + b_4_14·b_1_13·b_1_23·b_3_9 + b_4_14·b_1_13·b_1_26 + b_4_14·b_1_14·b_5_20 + b_4_14·b_1_14·b_1_25 + b_4_14·b_1_15·b_1_2·b_3_8 + b_4_14·b_1_15·b_1_24 + b_4_14·b_1_16·b_3_8 + b_4_14·b_1_16·b_1_23 + b_4_14·b_1_17·b_1_22 + b_4_14·b_1_18·b_1_2 + b_4_14·b_1_19 + b_4_142·b_1_22·b_3_9 + b_4_142·b_1_25 + b_4_142·b_1_1·b_1_2·b_3_8 + b_4_142·b_1_12·b_3_8 + b_4_142·b_1_12·b_1_23 + b_4_142·b_1_13·b_1_22 + b_4_142·b_1_14·b_1_2 + b_4_142·b_1_15 + a_2_4·b_4_142·b_3_9 + c_8_49·b_1_22·b_3_8 + c_8_49·b_1_25 + c_8_49·b_1_1·b_1_24 + c_8_49·b_1_12·b_3_9 + c_8_49·b_1_12·b_3_8 + c_8_49·b_1_12·b_1_23 + c_8_49·b_1_14·b_1_2 + a_2_42·c_8_49·b_1_0
- b_1_27·b_3_8·b_3_9 + b_1_1·b_1_29·b_3_8 + b_1_13·b_1_22·b_3_9·b_5_20
+ b_1_13·b_1_24·b_3_8·b_3_9 + b_1_13·b_1_25·b_5_20 + b_1_15·b_3_9·b_5_21 + b_1_15·b_3_9·b_5_20 + b_1_15·b_3_8·b_5_20 + b_1_15·b_1_23·b_5_20 + b_1_15·b_1_25·b_3_9 + b_1_15·b_1_25·b_3_8 + b_1_16·b_1_24·b_3_8 + b_1_17·b_3_8·b_3_9 + b_1_18·b_5_21 + b_1_18·b_5_20 + b_1_18·b_1_22·b_3_9 + b_1_18·b_1_22·b_3_8 + b_1_19·b_1_2·b_3_9 + b_1_110·b_3_8 + b_10_83·b_3_9 + b_10_83·b_1_13 + b_4_14·b_1_2·b_3_9·b_5_20 + b_4_14·b_1_2·b_3_8·b_5_20 + b_4_14·b_1_24·b_5_20 + b_4_14·b_1_1·b_3_9·b_5_21 + b_4_14·b_1_1·b_3_8·b_5_21 + b_4_14·b_1_1·b_3_8·b_5_20 + b_4_14·b_1_1·b_1_22·b_3_8·b_3_9 + b_4_14·b_1_1·b_1_23·b_5_20 + b_4_14·b_1_1·b_1_28 + b_4_14·b_1_12·b_1_22·b_5_20 + b_4_14·b_1_12·b_1_27 + b_4_14·b_1_13·b_3_8·b_3_9 + b_4_14·b_1_13·b_1_23·b_3_9 + b_4_14·b_1_13·b_1_23·b_3_8 + b_4_14·b_1_13·b_1_26 + b_4_14·b_1_14·b_5_21 + b_4_14·b_1_14·b_5_20 + b_4_14·b_1_14·b_1_25 + b_4_14·b_1_15·b_1_24 + b_4_14·b_1_16·b_3_8 + b_4_14·b_1_17·b_1_22 + b_4_14·b_1_18·b_1_2 + b_4_14·b_1_19 + b_4_142·b_1_22·b_3_8 + b_4_142·b_1_25 + b_4_142·b_1_1·b_1_2·b_3_9 + b_4_142·b_1_1·b_1_24 + b_4_142·b_1_12·b_3_9 + b_4_142·b_1_12·b_3_8 + b_4_142·b_1_12·b_1_23 + b_4_142·b_1_13·b_1_22 + b_4_142·b_1_14·b_1_2 + b_4_142·b_1_15 + c_8_49·b_1_22·b_3_9 + c_8_49·b_1_22·b_3_8 + c_8_49·b_1_25 + c_8_49·b_1_1·b_1_24 + c_8_49·b_1_12·b_3_9 + c_8_49·b_1_12·b_1_23 + c_8_49·b_1_13·b_1_22 + c_8_49·b_1_15 + a_2_4·c_8_49·b_3_9 + a_2_4·a_2_5·c_8_49·b_1_0 + a_2_42·c_8_49·b_1_0
- b_1_27·b_3_8·b_5_20 + b_1_1·b_1_211·b_3_8 + b_1_12·b_1_210·b_3_9
+ b_1_13·b_1_24·b_3_9·b_5_20 + b_1_13·b_1_27·b_5_20 + b_1_14·b_1_25·b_3_8·b_3_9 + b_1_14·b_1_28·b_3_9 + b_1_14·b_1_28·b_3_8 + b_1_15·b_1_24·b_3_8·b_3_9 + b_1_15·b_1_27·b_3_9 + b_1_15·b_1_27·b_3_8 + b_1_16·b_1_24·b_5_20 + b_1_16·b_1_26·b_3_9 + b_1_17·b_3_8·b_5_20 + b_1_17·b_1_22·b_3_8·b_3_9 + b_1_17·b_1_23·b_5_20 + b_1_17·b_1_25·b_3_8 + b_1_19·b_1_23·b_3_8 + b_1_110·b_5_20 + b_1_110·b_1_22·b_3_9 + b_1_111·b_1_2·b_3_9 + b_1_111·b_1_2·b_3_8 + b_10_83·b_5_20 + b_10_83·b_1_1·b_1_2·b_3_9 + b_10_83·b_1_1·b_1_2·b_3_8 + b_10_83·b_1_13·b_1_22 + b_10_83·b_1_14·b_1_2 + b_4_14·b_1_23·b_3_8·b_5_20 + b_4_14·b_1_25·b_3_8·b_3_9 + b_4_14·b_1_26·b_5_20 + b_4_14·b_1_1·b_1_25·b_5_20 + b_4_14·b_1_12·b_1_26·b_3_8 + b_4_14·b_1_13·b_3_8·b_5_20 + b_4_14·b_1_13·b_1_25·b_3_8 + b_4_14·b_1_14·b_1_2·b_3_8·b_3_9 + b_4_14·b_1_14·b_1_24·b_3_9 + b_4_14·b_1_15·b_1_23·b_3_9 + b_4_14·b_1_15·b_1_26 + b_4_14·b_1_16·b_1_22·b_3_8 + b_4_14·b_1_17·b_1_2·b_3_8 + b_4_14·b_1_17·b_1_24 + b_4_14·b_1_19·b_1_22 + b_4_142·b_1_22·b_5_20 + b_4_142·b_1_24·b_3_9 + b_4_142·b_1_24·b_3_8 + b_4_142·b_1_27 + b_4_142·b_1_1·b_1_23·b_3_9 + b_4_142·b_1_12·b_1_22·b_3_8 + b_4_142·b_1_12·b_1_25 + c_8_49·b_1_2·b_3_8·b_3_9 + c_8_49·b_1_22·b_5_20 + c_8_49·b_1_24·b_3_9 + c_8_49·b_1_24·b_3_8 + c_8_49·b_1_27 + c_8_49·b_1_12·b_5_20 + c_8_49·b_1_12·b_1_22·b_3_9 + c_8_49·b_1_12·b_1_22·b_3_8 + c_8_49·b_1_12·b_1_25 + c_8_49·b_1_13·b_1_2·b_3_9 + c_8_49·b_1_13·b_1_2·b_3_8 + c_8_49·b_1_15·b_1_22 + b_4_14·c_8_49·b_1_23 + b_4_14·c_8_49·b_1_1·b_1_22 + b_4_14·c_8_49·b_1_12·b_1_2 + a_2_4·c_8_49·b_5_20 + a_2_4·c_8_49·b_1_05 + a_2_4·b_4_14·c_8_49·b_1_2 + a_2_4·a_2_5·c_8_49·b_1_03
- b_1_1·b_1_26·b_3_8·b_5_20 + b_1_12·b_1_210·b_3_8 + b_1_13·b_1_29·b_3_9
+ b_1_14·b_1_23·b_3_9·b_5_20 + b_1_14·b_1_26·b_5_20 + b_1_15·b_1_24·b_3_8·b_3_9 + b_1_15·b_1_27·b_3_9 + b_1_15·b_1_27·b_3_8 + b_1_16·b_1_23·b_3_8·b_3_9 + b_1_16·b_1_26·b_3_9 + b_1_16·b_1_26·b_3_8 + b_1_17·b_3_8·b_5_21 + b_1_17·b_3_8·b_5_20 + b_1_17·b_1_23·b_5_20 + b_1_17·b_1_25·b_3_9 + b_1_18·b_1_2·b_3_8·b_3_9 + b_1_18·b_1_22·b_5_20 + b_1_18·b_1_24·b_3_8 + b_1_19·b_1_23·b_3_9 + b_1_19·b_1_23·b_3_8 + b_1_110·b_5_21 + b_1_110·b_1_22·b_3_9 + b_1_111·b_1_2·b_3_9 + b_1_112·b_3_9 + b_1_112·b_3_8 + b_10_83·b_5_21 + b_10_83·b_5_20 + b_10_83·b_1_1·b_1_2·b_3_8 + b_10_83·b_1_12·b_3_9 + b_10_83·b_1_12·b_3_8 + b_10_83·b_1_14·b_1_2 + b_10_83·b_1_15 + b_4_14·b_1_1·b_1_22·b_3_8·b_5_20 + b_4_14·b_1_1·b_1_24·b_3_8·b_3_9 + b_4_14·b_1_1·b_1_25·b_5_20 + b_4_14·b_1_12·b_1_24·b_5_20 + b_4_14·b_1_13·b_3_8·b_5_21 + b_4_14·b_1_13·b_3_8·b_5_20 + b_4_14·b_1_13·b_1_25·b_3_8 + b_4_14·b_1_14·b_1_24·b_3_8 + b_4_14·b_1_15·b_3_8·b_3_9 + b_4_14·b_1_15·b_1_23·b_3_8 + b_4_14·b_1_16·b_5_20 + b_4_14·b_1_16·b_1_22·b_3_8 + b_4_14·b_1_16·b_1_25 + b_4_14·b_1_18·b_3_8 + b_4_14·b_1_110·b_1_2 + b_4_142·b_1_1·b_1_2·b_5_20 + b_4_142·b_1_1·b_1_23·b_3_9 + b_4_142·b_1_1·b_1_23·b_3_8 + b_4_142·b_1_1·b_1_26 + b_4_142·b_1_12·b_1_22·b_3_9 + b_4_142·b_1_13·b_1_2·b_3_8 + b_4_142·b_1_13·b_1_24 + b_4_142·b_1_14·b_1_23 + a_2_4·b_4_142·b_5_20 + a_2_4·b_4_143·b_1_2 + a_2_42·a_2_5·b_1_09 + c_8_49·b_1_1·b_3_8·b_3_9 + c_8_49·b_1_1·b_1_2·b_5_20 + c_8_49·b_1_1·b_1_23·b_3_9 + c_8_49·b_1_1·b_1_23·b_3_8 + c_8_49·b_1_1·b_1_26 + c_8_49·b_1_12·b_5_21 + c_8_49·b_1_12·b_5_20 + c_8_49·b_1_13·b_1_2·b_3_9 + c_8_49·b_1_13·b_1_24 + c_8_49·b_1_14·b_3_9 + c_8_49·b_1_14·b_3_8 + c_8_49·b_1_16·b_1_2 + b_4_14·c_8_49·b_1_1·b_1_22 + b_4_14·c_8_49·b_1_12·b_1_2 + b_4_14·c_8_49·b_1_13 + a_2_5·c_8_49·b_1_05 + a_2_4·c_8_49·b_1_05 + a_2_4·a_2_5·c_8_49·b_1_03 + a_2_42·a_2_5·c_8_49·b_1_0
- b_10_83·b_1_22·b_3_9·b_5_20 + b_10_83·b_1_24·b_3_8·b_3_9 + b_10_83·b_1_25·b_5_20
+ b_10_83·b_1_27·b_3_9 + b_10_83·b_1_27·b_3_8 + b_10_83·b_1_1·b_1_24·b_5_20 + b_10_83·b_1_1·b_1_26·b_3_9 + b_10_83·b_1_12·b_3_8·b_5_21 + b_10_83·b_1_12·b_3_8·b_5_20 + b_10_83·b_1_12·b_1_23·b_5_20 + b_10_83·b_1_12·b_1_25·b_3_8 + b_10_83·b_1_12·b_1_28 + b_10_83·b_1_13·b_1_2·b_3_8·b_3_9 + b_10_83·b_1_13·b_1_22·b_5_20 + b_10_83·b_1_13·b_1_24·b_3_8 + b_10_83·b_1_13·b_1_27 + b_10_83·b_1_14·b_3_8·b_3_9 + b_10_83·b_1_14·b_1_2·b_5_20 + b_10_83·b_1_14·b_1_23·b_3_9 + b_10_83·b_1_14·b_1_23·b_3_8 + b_10_83·b_1_15·b_5_21 + b_10_83·b_1_15·b_1_25 + b_10_83·b_1_16·b_1_2·b_3_8 + b_10_83·b_1_17·b_3_9 + b_10_83·b_1_17·b_1_23 + b_10_83·b_1_18·b_1_22 + b_10_83·b_1_19·b_1_2 + b_10_832 + b_4_14·b_1_213·b_3_8 + b_4_14·b_1_1·b_1_212·b_3_9 + b_4_14·b_1_12·b_1_214 + b_4_14·b_1_13·b_1_25·b_3_8·b_5_20 + b_4_14·b_1_13·b_1_28·b_5_20 + b_4_14·b_1_13·b_1_210·b_3_8 + b_4_14·b_1_14·b_1_24·b_3_9·b_5_20 + b_4_14·b_1_14·b_1_24·b_3_8·b_5_20 + b_4_14·b_1_14·b_1_29·b_3_8 + b_4_14·b_1_14·b_1_212 + b_4_14·b_1_15·b_1_28·b_3_8 + b_4_14·b_1_15·b_1_211 + b_4_14·b_1_16·b_1_22·b_3_9·b_5_20 + b_4_14·b_1_16·b_1_24·b_3_8·b_3_9 + b_4_14·b_1_16·b_1_27·b_3_9 + b_4_14·b_1_16·b_1_210 + b_4_14·b_1_17·b_1_2·b_3_9·b_5_20 + b_4_14·b_1_17·b_1_2·b_3_8·b_5_20 + b_4_14·b_1_17·b_1_23·b_3_8·b_3_9 + b_4_14·b_1_17·b_1_26·b_3_9 + b_4_14·b_1_17·b_1_29 + b_4_14·b_1_18·b_3_9·b_5_21 + b_4_14·b_1_18·b_3_8·b_5_20 + b_4_14·b_1_18·b_1_23·b_5_20 + b_4_14·b_1_18·b_1_25·b_3_8 + b_4_14·b_1_18·b_1_28 + b_4_14·b_1_19·b_1_22·b_5_20 + b_4_14·b_1_110·b_1_2·b_5_20 + b_4_14·b_1_110·b_1_26 + b_4_14·b_1_111·b_5_21 + b_4_14·b_1_112·b_1_2·b_3_8 + b_4_14·b_1_112·b_1_24 + b_4_14·b_1_115·b_1_2 + b_4_14·b_10_83·b_1_2·b_5_20 + b_4_14·b_10_83·b_1_23·b_3_9 + b_4_14·b_10_83·b_1_1·b_1_22·b_3_9 + b_4_14·b_10_83·b_1_12·b_1_2·b_3_9 + b_4_14·b_10_83·b_1_12·b_1_2·b_3_8 + b_4_14·b_10_83·b_1_12·b_1_24 + b_4_14·b_10_83·b_1_13·b_3_9 + b_4_142·b_1_24·b_3_9·b_5_20 + b_4_142·b_1_24·b_3_8·b_5_20 + b_4_142·b_1_29·b_3_9 + b_4_142·b_1_1·b_1_25·b_3_8·b_3_9 + b_4_142·b_1_1·b_1_26·b_5_20 + b_4_142·b_1_1·b_1_211 + b_4_142·b_1_12·b_1_22·b_3_9·b_5_20 + b_4_142·b_1_12·b_1_24·b_3_8·b_3_9 + b_4_142·b_1_12·b_1_27·b_3_9 + b_4_142·b_1_13·b_1_2·b_3_9·b_5_20 + b_4_142·b_1_13·b_1_23·b_3_8·b_3_9 + b_4_142·b_1_13·b_1_26·b_3_8 + b_4_142·b_1_13·b_1_29 + b_4_142·b_1_14·b_3_9·b_5_21 + b_4_142·b_1_14·b_3_8·b_5_20 + b_4_142·b_1_14·b_1_22·b_3_8·b_3_9 + b_4_142·b_1_14·b_1_23·b_5_20 + b_4_142·b_1_14·b_1_25·b_3_9 + b_4_142·b_1_15·b_1_2·b_3_8·b_3_9 + b_4_142·b_1_15·b_1_24·b_3_9 + b_4_142·b_1_16·b_3_8·b_3_9 + b_4_142·b_1_16·b_1_23·b_3_8 + b_4_142·b_1_17·b_5_20 + b_4_142·b_1_17·b_1_22·b_3_8 + b_4_142·b_1_18·b_1_2·b_3_8 + b_4_142·b_1_19·b_3_8 + b_4_142·b_1_110·b_1_22 + b_4_143·b_1_23·b_5_20 + b_4_143·b_1_25·b_3_8 + b_4_143·b_1_28 + b_4_143·b_1_1·b_1_24·b_3_9 + b_4_143·b_1_1·b_1_24·b_3_8 + b_4_143·b_1_1·b_1_27 + b_4_143·b_1_13·b_5_21 + b_4_143·b_1_13·b_5_20 + b_4_143·b_1_13·b_1_25 + b_4_143·b_1_14·b_1_2·b_3_9 + b_4_143·b_1_15·b_3_9 + b_4_143·b_1_16·b_1_22 + b_4_144·b_1_24 + b_4_144·b_1_14 + c_8_49·b_1_24·b_3_9·b_5_20 + c_8_49·b_1_24·b_3_8·b_5_20 + c_8_49·b_1_27·b_5_20 + c_8_49·b_1_29·b_3_9 + c_8_49·b_1_29·b_3_8 + c_8_49·b_1_1·b_1_23·b_3_9·b_5_20 + c_8_49·b_1_1·b_1_23·b_3_8·b_5_20 + c_8_49·b_1_1·b_1_25·b_3_8·b_3_9 + c_8_49·b_1_1·b_1_26·b_5_20 + c_8_49·b_1_1·b_1_211 + c_8_49·b_1_12·b_1_22·b_3_9·b_5_20 + c_8_49·b_1_12·b_1_22·b_3_8·b_5_20 + c_8_49·b_1_13·b_1_2·b_3_8·b_5_20 + c_8_49·b_1_13·b_1_26·b_3_9 + c_8_49·b_1_13·b_1_29 + c_8_49·b_1_14·b_3_9·b_5_20 + c_8_49·b_1_14·b_3_8·b_5_21 + c_8_49·b_1_14·b_3_8·b_5_20 + c_8_49·b_1_14·b_1_22·b_3_8·b_3_9 + c_8_49·b_1_14·b_1_23·b_5_20 + c_8_49·b_1_14·b_1_25·b_3_8 + c_8_49·b_1_14·b_1_28 + c_8_49·b_1_15·b_1_2·b_3_8·b_3_9 + c_8_49·b_1_15·b_1_24·b_3_9 + c_8_49·b_1_15·b_1_27 + c_8_49·b_1_16·b_1_2·b_5_20 + c_8_49·b_1_16·b_1_26 + c_8_49·b_1_17·b_5_21 + c_8_49·b_1_17·b_5_20 + c_8_49·b_1_19·b_3_9 + c_8_49·b_1_19·b_3_8 + c_8_49·b_1_110·b_1_22 + c_8_49·b_1_111·b_1_2 + b_4_14·c_8_49·b_1_22·b_3_8·b_3_9 + b_4_14·c_8_49·b_1_28 + b_4_14·c_8_49·b_1_1·b_1_24·b_3_8 + b_4_14·c_8_49·b_1_12·b_1_23·b_3_8 + b_4_14·c_8_49·b_1_12·b_1_26 + b_4_14·c_8_49·b_1_13·b_5_21 + b_4_14·c_8_49·b_1_13·b_5_20 + b_4_14·c_8_49·b_1_13·b_1_22·b_3_9 + b_4_14·c_8_49·b_1_13·b_1_22·b_3_8 + b_4_14·c_8_49·b_1_13·b_1_25 + b_4_14·c_8_49·b_1_14·b_1_2·b_3_8 + b_4_14·c_8_49·b_1_15·b_3_9 + b_4_14·c_8_49·b_1_15·b_3_8 + b_4_14·c_8_49·b_1_16·b_1_22 + b_4_14·c_8_49·b_1_17·b_1_2 + b_4_14·c_8_49·b_1_18 + b_4_142·c_8_49·b_1_1·b_1_23 + c_8_492·b_1_24 + c_8_492·b_1_12·b_1_22 + c_8_492·b_1_14 + c_8_492·b_1_04 + a_2_42·c_8_492
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_49, a Duflot regular element of degree 8
- b_1_24 + b_1_1·b_3_9 + b_1_12·b_1_22 + b_1_14 + b_1_04 + b_4_14, an element of degree 4
- b_1_1·b_1_22·b_3_9 + b_1_12·b_1_2·b_3_9 + b_1_12·b_1_24 + b_1_13·b_3_9
+ b_1_14·b_1_22 + b_4_14·b_1_22 + b_4_14·b_1_1·b_1_2 + b_4_14·b_1_12, an element of degree 6
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 13, 16].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_14 → 0, an element of degree 4
- b_5_20 → 0, an element of degree 5
- b_5_21 → 0, an element of degree 5
- c_8_49 → c_1_08, an element of degree 8
- b_10_83 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_14 → 0, an element of degree 4
- b_5_20 → 0, an element of degree 5
- b_5_21 → 0, an element of degree 5
- c_8_49 → c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_10_83 → c_1_04·c_1_16 + c_1_08·c_1_12, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_3_9 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_22
+ c_1_02·c_1_2, an element of degree 3
- b_4_14 → c_1_34 + c_1_22·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22
+ c_1_02·c_1_1·c_1_2, an element of degree 4
- b_5_20 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_22·c_1_3
+ c_1_0·c_1_24 + c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22 + c_1_04·c_1_2, an element of degree 5
- b_5_21 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_23·c_1_3 + c_1_13·c_1_2·c_1_3
+ c_1_0·c_1_24 + c_1_0·c_1_13·c_1_2 + c_1_0·c_1_14 + c_1_02·c_1_1·c_1_22 + c_1_04·c_1_2 + c_1_04·c_1_1, an element of degree 5
- c_8_49 → c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
+ c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_23·c_1_32 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_32 + c_1_0·c_1_16·c_1_3 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_23·c_1_32 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_13·c_1_22 + c_1_03·c_1_15 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_05·c_1_12·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_1·c_1_2 + c_1_06·c_1_12 + c_1_08, an element of degree 8
- b_10_83 → c_1_22·c_1_38 + c_1_24·c_1_36 + c_1_25·c_1_35 + c_1_26·c_1_34
+ c_1_27·c_1_33 + c_1_29·c_1_3 + c_1_1·c_1_22·c_1_37 + c_1_1·c_1_27·c_1_32 + c_1_12·c_1_38 + c_1_12·c_1_2·c_1_37 + c_1_12·c_1_23·c_1_35 + c_1_12·c_1_27·c_1_3 + c_1_13·c_1_2·c_1_36 + c_1_13·c_1_22·c_1_35 + c_1_13·c_1_23·c_1_34 + c_1_13·c_1_24·c_1_33 + c_1_13·c_1_26·c_1_3 + c_1_14·c_1_36 + c_1_14·c_1_2·c_1_35 + c_1_14·c_1_22·c_1_34 + c_1_14·c_1_23·c_1_33 + c_1_14·c_1_24·c_1_32 + c_1_15·c_1_35 + c_1_15·c_1_2·c_1_34 + c_1_15·c_1_23·c_1_32 + c_1_15·c_1_24·c_1_3 + c_1_16·c_1_34 + c_1_16·c_1_2·c_1_33 + c_1_17·c_1_33 + c_1_19·c_1_3 + c_1_0·c_1_23·c_1_36 + c_1_0·c_1_24·c_1_35 + c_1_0·c_1_25·c_1_34 + c_1_0·c_1_26·c_1_33 + c_1_0·c_1_27·c_1_32 + c_1_0·c_1_28·c_1_3 + c_1_0·c_1_1·c_1_26·c_1_32 + c_1_0·c_1_1·c_1_27·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_36 + c_1_0·c_1_12·c_1_22·c_1_35 + c_1_0·c_1_12·c_1_26·c_1_3 + c_1_0·c_1_13·c_1_36 + c_1_0·c_1_13·c_1_22·c_1_34 + c_1_0·c_1_13·c_1_25·c_1_3 + c_1_0·c_1_13·c_1_26 + c_1_0·c_1_14·c_1_35 + c_1_0·c_1_14·c_1_2·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_33 + c_1_0·c_1_14·c_1_23·c_1_32 + c_1_0·c_1_14·c_1_25 + c_1_0·c_1_15·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_23·c_1_3 + c_1_0·c_1_15·c_1_24 + c_1_0·c_1_16·c_1_33 + c_1_0·c_1_16·c_1_2·c_1_32 + c_1_0·c_1_16·c_1_22·c_1_3 + c_1_0·c_1_16·c_1_23 + c_1_0·c_1_17·c_1_22 + c_1_0·c_1_18·c_1_3 + c_1_0·c_1_18·c_1_2 + c_1_02·c_1_22·c_1_36 + c_1_02·c_1_23·c_1_35 + c_1_02·c_1_25·c_1_33 + c_1_02·c_1_27·c_1_3 + c_1_02·c_1_1·c_1_2·c_1_36 + c_1_02·c_1_1·c_1_22·c_1_35 + c_1_02·c_1_1·c_1_25·c_1_32 + c_1_02·c_1_12·c_1_36 + c_1_02·c_1_12·c_1_22·c_1_34 + c_1_02·c_1_12·c_1_24·c_1_32 + c_1_02·c_1_12·c_1_26 + c_1_02·c_1_13·c_1_35 + c_1_02·c_1_14·c_1_2·c_1_33 + c_1_02·c_1_14·c_1_23·c_1_3 + c_1_02·c_1_15·c_1_33 + c_1_02·c_1_15·c_1_22·c_1_3 + c_1_02·c_1_15·c_1_23 + c_1_02·c_1_17·c_1_3 + c_1_03·c_1_25·c_1_32 + c_1_03·c_1_26·c_1_3 + c_1_03·c_1_27 + c_1_03·c_1_1·c_1_22·c_1_34 + c_1_03·c_1_1·c_1_24·c_1_32 + c_1_03·c_1_1·c_1_26 + c_1_03·c_1_12·c_1_2·c_1_34 + c_1_03·c_1_12·c_1_24·c_1_3 + c_1_03·c_1_12·c_1_25 + c_1_03·c_1_13·c_1_24 + c_1_03·c_1_15·c_1_32 + c_1_03·c_1_15·c_1_22 + c_1_03·c_1_16·c_1_3 + c_1_03·c_1_16·c_1_2 + c_1_03·c_1_17 + c_1_04·c_1_22·c_1_34 + c_1_04·c_1_25·c_1_3 + c_1_04·c_1_1·c_1_2·c_1_34 + c_1_04·c_1_1·c_1_22·c_1_33 + c_1_04·c_1_1·c_1_24·c_1_3 + c_1_04·c_1_1·c_1_25 + c_1_04·c_1_12·c_1_2·c_1_33 + c_1_04·c_1_12·c_1_22·c_1_32 + c_1_04·c_1_13·c_1_22·c_1_3 + c_1_04·c_1_14·c_1_32 + c_1_04·c_1_15·c_1_3 + c_1_04·c_1_15·c_1_2 + c_1_05·c_1_23·c_1_32 + c_1_05·c_1_24·c_1_3 + c_1_05·c_1_25 + c_1_05·c_1_1·c_1_24 + c_1_05·c_1_12·c_1_2·c_1_32 + c_1_05·c_1_12·c_1_22·c_1_3 + c_1_05·c_1_12·c_1_23 + c_1_05·c_1_13·c_1_32 + c_1_05·c_1_14·c_1_3 + c_1_05·c_1_14·c_1_2 + c_1_05·c_1_15 + c_1_06·c_1_22·c_1_32 + c_1_06·c_1_23·c_1_3 + c_1_06·c_1_24 + c_1_06·c_1_1·c_1_2·c_1_32 + c_1_06·c_1_1·c_1_22·c_1_3 + c_1_06·c_1_12·c_1_32 + c_1_06·c_1_13·c_1_3 + c_1_06·c_1_13·c_1_2 + c_1_06·c_1_14 + c_1_07·c_1_1·c_1_22 + c_1_07·c_1_12·c_1_2 + c_1_08·c_1_22 + c_1_08·c_1_1·c_1_2 + c_1_08·c_1_12, an element of degree 10
|