Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 935 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(2) · (t8 − t5 − t2 − 1/2·t − 1/2) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 9:
- a_1_1, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_2_5, a nilpotent element of degree 2
- b_4_8, an element of degree 4
- a_5_10, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- b_5_11, an element of degree 5
- b_5_12, an element of degree 5
- c_8_19, a Duflot regular element of degree 8
- b_9_23, an element of degree 9
Ring relations
There are 44 minimal relations of maximal degree 18:
- a_1_1·b_1_0
- b_1_0·b_1_2
- a_2_4·a_1_1 + a_1_13
- a_2_5·b_1_2
- a_2_4·b_1_2 + a_2_5·a_1_1 + a_1_13
- a_1_14
- a_1_12·b_1_22
- a_2_52 + a_2_4·a_2_5 + a_2_42
- b_4_8·b_1_0
- a_2_43
- b_1_0·a_5_10 + a_2_5·b_1_04 + a_2_42·b_1_02
- a_1_1·a_5_8 + a_1_1·a_5_10 + b_4_8·a_1_12
- b_1_0·a_5_8 + a_2_5·b_1_04 + a_2_4·b_1_04 + a_2_4·a_2_5·b_1_02 + a_2_42·a_2_5
- b_1_2·a_5_10 + a_1_1·b_5_11 + b_4_8·a_1_1·b_1_2 + a_1_1·a_5_10 + b_4_8·a_1_12
- b_1_0·b_5_11 + a_2_4·b_1_04 + a_2_4·a_2_5·b_1_02 + a_2_42·b_1_02
- b_1_2·a_5_8 + a_1_1·b_5_12 + b_4_8·a_1_1·b_1_2
- b_1_0·b_5_12 + a_2_4·a_2_5·b_1_02 + a_2_42·b_1_02 + a_2_42·a_2_5
- b_4_8·a_1_12·b_1_2 + a_2_5·b_4_8·a_1_1 + a_2_4·a_5_10 + a_2_4·a_2_5·b_1_03
+ a_1_12·a_5_10
- b_4_8·a_1_12·b_1_2 + a_2_5·b_4_8·a_1_1 + a_2_4·a_5_8 + a_2_4·a_2_5·b_1_03
+ a_2_42·b_1_03 + a_1_12·a_5_10 + b_4_8·a_1_13 + a_2_42·a_2_5·b_1_0
- a_2_5·a_5_8 + a_2_5·a_5_10 + a_2_5·b_4_8·a_1_1 + a_2_4·a_2_5·b_1_03
- a_2_4·b_5_11 + a_2_5·a_5_10 + a_2_5·b_4_8·a_1_1 + a_2_4·a_2_5·b_1_03
- a_2_5·b_5_11 + b_4_8·a_1_12·b_1_2 + a_2_5·a_5_10 + a_2_42·b_1_03
+ a_2_42·a_2_5·b_1_0
- a_2_4·b_5_12 + b_4_8·a_1_12·b_1_2 + a_2_5·a_5_10 + a_2_5·b_4_8·a_1_1
+ a_2_4·a_2_5·b_1_03 + a_2_42·b_1_03 + a_1_12·a_5_10
- a_2_5·b_5_12 + b_4_8·a_1_12·b_1_2 + a_2_5·b_4_8·a_1_1
- a_2_42·b_4_8 + a_1_13·a_5_10
- a_1_12·b_1_2·b_5_11 + a_2_4·a_2_5·b_4_8 + a_2_5·a_1_1·a_5_10
- a_5_82 + a_5_102 + b_4_82·a_1_12 + a_2_42·b_1_06
- a_5_10·a_5_8 + a_5_102 + b_4_8·a_1_1·a_5_10 + a_2_4·a_2_5·b_1_06
- b_5_122 + b_5_112 + b_4_8·b_1_26 + b_4_82·b_1_22 + a_1_1·b_1_24·b_5_12
+ a_1_1·b_1_24·b_5_11 + b_4_8·a_1_1·b_1_25 + a_5_102 + b_4_82·a_1_12 + a_2_4·a_2_5·b_1_06
- a_5_8·b_5_12 + a_5_8·b_5_11 + a_5_10·b_5_12 + a_5_10·b_5_11 + b_4_8·a_1_1·b_1_25
+ b_4_82·a_1_1·b_1_2 + b_4_8·a_1_1·a_5_10 + b_4_82·a_1_12 + a_2_42·b_1_06 + a_2_42·a_2_5·b_1_04
- a_5_8·b_5_12 + a_5_10·b_5_11 + b_4_8·a_1_1·b_5_12 + b_4_8·a_1_1·b_5_11
+ b_4_8·a_1_1·b_1_25 + b_4_82·a_1_1·b_1_2 + a_5_102 + b_4_82·a_1_12 + a_2_42·b_1_06 + a_2_42·a_2_5·b_1_04
- b_5_112 + b_1_25·b_5_12 + b_1_25·b_5_11 + b_4_8·b_1_2·b_5_11 + b_4_8·b_1_26
+ a_1_1·b_1_24·b_5_11 + b_4_8·a_1_1·b_5_11 + a_2_5·b_4_82 + a_5_102 + b_4_8·a_1_1·a_5_10 + b_4_82·a_1_12 + a_2_4·a_2_5·b_1_06 + c_8_19·b_1_22
- a_5_10·b_5_11 + a_1_1·b_1_24·b_5_12 + a_1_1·b_1_24·b_5_11 + b_4_8·a_1_1·b_1_25
+ a_2_5·b_4_82 + a_2_4·b_4_82 + a_5_102 + b_4_8·a_1_1·a_5_10 + a_2_42·b_1_06 + c_8_19·a_1_1·b_1_2
- a_2_4·b_4_82 + a_5_102 + b_4_8·a_1_1·a_5_10 + a_2_4·a_2_5·b_1_06
+ a_2_42·b_1_06 + c_8_19·a_1_12
- b_5_11·b_5_12 + b_5_112 + b_1_2·b_9_23 + b_1_25·b_5_12 + b_1_25·b_5_11
+ b_4_8·b_1_2·b_5_12 + b_4_8·a_1_1·b_5_11 + b_4_82·a_1_1·b_1_2 + a_2_5·b_4_82 + a_2_4·b_4_82 + a_5_102 + b_4_8·a_1_1·a_5_10 + a_2_4·a_2_5·b_1_06 + a_2_42·a_2_5·b_1_04
- a_5_8·b_5_12 + a_5_8·b_5_11 + a_1_1·b_9_23 + a_1_1·b_1_24·b_5_12 + a_1_1·b_1_24·b_5_11
+ b_4_8·a_1_1·b_5_11 + b_4_8·a_1_1·b_1_25 + b_4_82·a_1_1·b_1_2 + a_2_4·b_4_82 + b_4_8·a_1_1·a_5_10 + a_2_4·a_2_5·b_1_06 + a_2_42·b_1_06 + a_2_42·a_2_5·b_1_04
- b_1_0·b_9_23 + a_2_5·b_1_08 + a_2_4·b_1_08 + a_2_4·a_2_5·b_1_06 + a_2_42·b_1_06
- a_2_4·b_9_23 + a_2_5·b_4_82·a_1_1 + a_2_4·b_4_8·a_5_10 + a_2_4·a_2_5·b_1_07
+ a_2_42·b_1_07 + b_4_82·a_1_13 + a_2_42·a_2_5·b_1_05 + c_8_19·a_1_13
- a_2_5·b_9_23 + a_2_5·b_4_8·a_5_10 + a_2_42·b_1_07 + a_2_5·c_8_19·a_1_1
- a_5_8·b_9_23 + a_1_1·b_1_24·b_9_23 + a_1_1·b_1_28·b_5_12 + a_1_1·b_1_28·b_5_11
+ b_4_82·a_1_1·b_5_12 + b_4_83·a_1_1·b_1_2 + b_4_8·a_5_102 + b_4_82·a_1_1·a_5_10 + a_2_4·a_2_5·b_1_010 + a_2_42·a_2_5·b_1_08 + c_8_19·a_1_1·b_5_12 + c_8_19·a_1_1·b_5_11 + b_4_8·c_8_19·a_1_1·b_1_2
- b_5_11·b_9_23 + b_1_25·b_9_23 + b_1_29·b_5_12 + b_1_29·b_5_11 + b_4_8·b_1_25·b_5_12
+ b_4_8·b_1_210 + b_4_82·b_1_2·b_5_11 + a_5_10·b_9_23 + a_1_1·b_1_28·b_5_12 + a_1_1·b_1_28·b_5_11 + b_4_82·a_1_1·b_5_12 + a_2_5·b_4_83 + b_4_8·a_5_102 + a_2_4·a_2_5·b_1_010 + a_2_42·a_2_5·b_1_08 + c_8_19·b_1_2·b_5_12 + c_8_19·b_1_2·b_5_11 + b_4_8·c_8_19·b_1_22 + c_8_19·a_1_1·b_5_12 + c_8_19·a_1_1·b_5_11 + c_8_19·a_1_1·a_5_10 + b_4_8·c_8_19·a_1_12
- b_5_12·b_9_23 + b_1_25·b_9_23 + b_1_29·b_5_12 + b_1_29·b_5_11 + b_4_8·b_1_2·b_9_23
+ b_4_82·b_1_2·b_5_12 + b_4_83·b_1_22 + b_4_8·a_1_1·b_1_24·b_5_11 + b_4_82·a_1_1·b_5_12 + b_4_82·a_1_1·b_5_11 + b_4_82·a_1_1·b_1_25 + b_4_83·a_1_1·b_1_2 + a_2_5·b_4_83 + b_4_8·a_5_102 + b_4_83·a_1_12 + a_2_42·a_2_5·b_1_08 + c_8_19·b_1_2·b_5_12 + c_8_19·b_1_2·b_5_11 + b_4_8·c_8_19·b_1_22 + b_4_8·c_8_19·a_1_1·b_1_2 + b_4_8·c_8_19·a_1_12
- b_5_11·b_9_23 + b_1_25·b_9_23 + b_1_29·b_5_12 + b_1_29·b_5_11 + b_4_8·b_1_25·b_5_12
+ b_4_8·b_1_210 + b_4_82·b_1_2·b_5_11 + a_1_1·b_1_24·b_9_23 + b_4_8·a_1_1·b_9_23 + b_4_8·a_1_1·b_1_24·b_5_12 + b_4_8·a_1_1·b_1_29 + b_4_82·a_1_1·b_5_12 + b_4_82·a_1_1·b_5_11 + a_2_5·b_4_83 + b_4_83·a_1_12 + a_2_4·a_2_5·b_1_010 + a_2_42·b_1_010 + c_8_19·b_1_2·b_5_12 + c_8_19·b_1_2·b_5_11 + b_4_8·c_8_19·b_1_22 + b_4_8·c_8_19·a_1_1·b_1_2 + c_8_19·a_1_1·a_5_10 + b_4_8·c_8_19·a_1_12
- b_9_232 + b_4_8·b_1_29·b_5_12 + b_4_8·b_1_29·b_5_11 + b_4_8·b_1_214
+ b_4_82·b_1_25·b_5_11 + b_4_83·b_1_26 + b_4_84·b_1_22 + a_1_1·b_1_212·b_5_12 + a_1_1·b_1_212·b_5_11 + b_4_8·a_1_1·b_1_24·b_9_23 + b_4_8·a_1_1·b_1_28·b_5_12 + b_4_82·a_1_1·b_1_24·b_5_11 + b_4_83·a_1_1·b_1_25 + b_4_82·a_5_102 + a_2_4·a_2_5·b_1_014 + b_4_8·c_8_19·b_1_26 + c_8_19·a_1_1·b_1_24·b_5_12 + c_8_19·a_1_1·b_1_24·b_5_11 + b_4_8·c_8_19·a_1_1·b_1_25 + c_8_192·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_19, a Duflot regular element of degree 8
- b_1_24 + b_1_04 + b_4_8, an element of degree 4
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- b_5_11 → 0, an element of degree 5
- b_5_12 → 0, an element of degree 5
- c_8_19 → c_1_08, an element of degree 8
- b_9_23 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_1 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- b_5_11 → 0, an element of degree 5
- b_5_12 → 0, an element of degree 5
- c_8_19 → c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_23 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- b_5_11 → c_1_1·c_1_24 + c_1_14·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_12 → c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- c_8_19 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_17·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_23 → c_1_1·c_1_28 + c_1_15·c_1_24 + c_1_17·c_1_22 + c_1_18·c_1_2
+ c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_14·c_1_2, an element of degree 9
|