Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 937 of order 128
General information on the group
- The group is also known as Syl2(Sp4(3)), the Sylow 2-subgroup of Symplectic Group Sp_4(3).
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(t2 + t + 1) · (t6 + 2·t4 − t3 + 2·t2 + 1) |
| (t − 1)2 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 8:
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_2_5, a nilpotent element of degree 2
- b_4_8, an element of degree 4
- a_5_9, a nilpotent element of degree 5
- a_5_10, a nilpotent element of degree 5
- c_8_15, a Duflot regular element of degree 8
Ring relations
There are 21 minimal relations of maximal degree 10:
- a_1_1·b_1_0
- a_1_2·b_1_0
- a_2_4·a_1_1 + a_1_1·a_1_22 + a_1_12·a_1_2 + a_1_13
- a_2_5·a_1_1 + a_2_4·a_1_2 + a_1_1·a_1_22 + a_1_12·a_1_2 + a_1_13
- a_2_5·a_1_2
- a_1_14
- a_1_24
- a_2_52 + a_2_4·a_2_5 + a_2_42 + a_1_12·a_1_22 + a_1_13·a_1_2
- b_4_8·b_1_0
- a_2_43
- b_1_0·a_5_9 + a_2_5·b_1_04 + a_2_4·b_1_04 + a_2_42·b_1_02
- a_1_2·a_5_9 + a_1_1·a_5_10 + a_1_1·a_5_9 + b_4_8·a_1_22
- b_1_0·a_5_10 + a_2_5·b_1_04 + a_2_4·a_2_5·b_1_02 + a_2_42·b_1_02
- a_2_5·a_5_10 + a_2_5·a_5_9 + a_2_4·b_4_8·a_1_2 + a_2_4·a_2_5·b_1_03 + b_4_8·a_1_23
+ b_4_8·a_1_1·a_1_22 + b_4_8·a_1_12·a_1_2 + b_4_8·a_1_13 + a_2_42·a_2_5·b_1_0
- a_2_5·a_5_9 + a_2_4·a_5_10 + a_2_4·b_4_8·a_1_2 + a_2_4·a_2_5·b_1_03 + a_2_42·b_1_03
- a_2_4·a_5_9 + a_2_4·a_2_5·b_1_03 + a_2_42·b_1_03 + a_1_1·a_1_2·a_5_10
+ a_1_12·a_5_9 + b_4_8·a_1_23 + b_4_8·a_1_13
- a_2_42·b_4_8 + a_1_13·a_5_9 + b_4_8·a_1_12·a_1_22
- a_2_4·a_2_5·b_4_8 + a_1_23·a_5_10 + a_1_1·a_1_22·a_5_10 + a_1_12·a_1_2·a_5_10
+ a_1_13·a_5_10 + b_4_8·a_1_12·a_1_22 + b_4_8·a_1_13·a_1_2
- a_2_4·b_4_82 + a_5_92 + b_4_8·a_1_1·a_5_9 + b_4_82·a_1_22 + b_4_82·a_1_1·a_1_2
+ b_4_82·a_1_12 + a_2_4·a_2_5·b_1_06 + a_1_13·a_1_22·a_5_10 + c_8_15·a_1_12
- a_2_5·b_4_82 + a_2_4·b_4_82 + a_5_9·a_5_10 + a_5_92 + b_4_8·a_1_2·a_5_10
+ b_4_82·a_1_22 + b_4_82·a_1_1·a_1_2 + a_2_4·a_2_5·b_1_06 + a_2_42·b_1_06 + a_1_13·a_1_22·a_5_10 + c_8_15·a_1_1·a_1_2
- a_2_5·b_4_82 + a_5_102 + a_5_92 + b_4_8·a_1_2·a_5_10 + b_4_8·a_1_1·a_5_10
+ b_4_8·a_1_1·a_5_9 + b_4_82·a_1_22 + b_4_82·a_1_1·a_1_2 + b_4_82·a_1_12 + a_2_42·b_1_06 + a_1_13·a_1_22·a_5_10 + c_8_15·a_1_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 11.
- However, the last relation was already found in degree 10 and the last generator in degree 8.
- The following is a filter regular homogeneous system of parameters:
- c_8_15, a Duflot regular element of degree 8
- b_1_04 + b_4_8, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- c_8_15 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → 0, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- c_8_15 → c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_4_8 → c_1_14, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- c_8_15 → c_1_18 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|