Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 970 of order 128
General information on the group
- The group has 3 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 + t4 − t2 + t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-6,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 9:
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_3_3, an element of degree 3
- b_3_4, an element of degree 3
- b_4_6, an element of degree 4
- b_5_7, an element of degree 5
- b_5_8, an element of degree 5
- b_5_9, an element of degree 5
- b_6_12, an element of degree 6
- b_7_13, an element of degree 7
- b_7_15, an element of degree 7
- c_8_19, a Duflot regular element of degree 8
- b_9_24, an element of degree 9
Ring relations
There are 65 minimal relations of maximal degree 18:
- a_1_2·b_1_0
- b_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- b_1_1·b_3_3
- a_1_2·b_3_3
- a_1_2·b_3_4
- b_1_12·b_3_4
- b_4_6·a_1_2
- b_3_32 + b_1_03·b_3_3 + b_4_6·b_1_02
- b_3_42 + b_3_3·b_3_4 + b_1_0·b_5_7
- a_1_2·b_5_7
- b_3_32 + b_1_0·b_5_8
- b_1_1·b_5_7 + a_1_2·b_5_8
- b_3_42 + b_3_32 + b_1_0·b_5_9
- b_1_1·b_5_7 + a_1_2·b_5_9
- b_1_12·b_5_9 + b_1_12·b_5_8 + b_4_6·b_1_13
- b_1_04·b_3_3 + b_6_12·b_1_0 + b_4_6·b_3_3
- b_6_12·a_1_2
- b_3_4·b_5_8 + b_3_3·b_5_9 + b_3_3·b_5_8 + b_3_3·b_5_7 + b_4_6·b_1_1·b_3_4
- b_3_4·b_5_9 + b_3_4·b_5_7 + b_3_3·b_5_7
- b_3_4·b_5_8 + b_3_3·b_5_8 + b_1_03·b_5_9 + b_1_03·b_5_7 + b_4_6·b_1_1·b_3_4
+ b_4_6·b_1_0·b_3_4 + b_4_6·b_1_0·b_3_3
- b_3_3·b_5_8 + b_6_12·b_1_02 + b_4_6·b_1_04
- b_1_1·b_7_13
- b_3_4·b_5_8 + b_3_3·b_5_7 + b_1_0·b_7_13 + b_1_03·b_5_7 + b_4_6·b_1_1·b_3_4
+ b_4_6·b_1_0·b_3_4 + b_4_6·b_1_0·b_3_3
- a_1_2·b_7_13
- b_3_4·b_5_7 + b_3_3·b_5_8 + b_1_0·b_7_15 + b_1_03·b_5_7 + b_4_6·b_1_0·b_3_3
- a_1_2·b_7_15 + a_1_2·b_1_12·b_5_8
- b_1_04·b_5_9 + b_1_04·b_5_7 + b_6_12·b_3_4 + b_6_12·b_3_3 + b_4_6·b_5_9 + b_4_6·b_5_8
+ b_4_6·b_5_7 + b_4_6·b_1_02·b_3_3 + b_4_62·b_1_1 + b_4_62·b_1_0
- b_6_12·b_3_3 + b_6_12·b_1_03 + b_4_6·b_1_05 + b_4_62·b_1_0
- b_1_12·b_7_15 + b_1_14·b_5_8 + b_6_12·b_1_13 + b_4_6·b_5_8 + b_4_6·b_1_15
+ b_4_6·b_1_02·b_3_3 + b_4_62·b_1_1 + b_4_62·b_1_0 + a_1_2·b_1_13·b_5_8
- b_5_92 + b_5_8·b_5_9 + b_5_72 + b_4_6·b_1_1·b_5_9
- b_5_8·b_5_9 + b_5_82 + b_5_7·b_5_8 + b_6_12·b_1_0·b_3_4 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_03·b_3_4 + b_4_62·b_1_12
- b_5_8·b_5_9 + b_5_82 + b_5_7·b_5_8 + b_3_3·b_7_13 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_0·b_5_9 + b_4_62·b_1_12
- b_5_8·b_5_9 + b_5_82 + b_1_03·b_7_13 + b_1_05·b_5_7 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_0·b_5_9 + b_4_6·b_1_03·b_3_4 + b_4_62·b_1_12 + b_4_62·b_1_02
- b_5_7·b_5_9 + b_5_72 + b_3_3·b_7_15 + b_6_12·b_1_04 + b_4_6·b_1_0·b_5_7
+ b_4_6·b_1_06
- b_5_7·b_5_8 + b_5_72 + b_3_4·b_7_15 + b_3_4·b_7_13 + b_4_6·b_1_0·b_5_9
+ b_4_6·b_1_03·b_3_3 + b_4_62·b_1_02
- b_5_8·b_5_9 + b_5_82 + b_5_7·b_5_9 + b_5_7·b_5_8 + b_5_72 + b_3_4·b_7_13
+ b_1_03·b_7_15 + b_1_05·b_5_7 + b_6_12·b_1_04 + b_4_6·b_1_1·b_5_9 + b_4_6·b_1_0·b_5_7 + b_4_6·b_1_03·b_3_3 + b_4_6·b_1_06 + b_4_62·b_1_12
- b_5_72 + b_1_05·b_5_7 + b_6_12·b_1_04 + b_4_6·b_1_03·b_3_4 + b_4_6·b_1_03·b_3_3
+ c_8_19·b_1_02
- b_5_82 + b_6_12·b_1_04 + b_4_6·b_1_16 + b_4_6·b_1_03·b_3_3 + b_4_6·b_1_06
+ b_4_62·b_1_12 + b_4_62·b_1_02 + a_1_2·b_1_14·b_5_8 + c_8_19·a_1_22
- b_5_8·b_5_9 + b_3_4·b_7_13 + b_1_0·b_9_24 + b_1_05·b_5_7 + b_4_6·b_1_1·b_5_9
+ b_4_6·b_1_16 + b_4_6·b_1_0·b_5_9 + b_4_6·b_1_0·b_5_7 + b_4_6·b_1_03·b_3_4 + b_4_6·b_1_06 + a_1_2·b_1_14·b_5_8
- a_1_2·b_9_24 + c_8_19·a_1_2·b_1_1
- b_6_12·b_5_9 + b_6_12·b_5_8 + b_6_12·b_5_7 + b_6_12·b_1_02·b_3_4 + b_4_6·b_1_04·b_3_4
+ b_4_6·b_6_12·b_1_1 + b_4_62·b_3_4
- b_1_04·b_7_13 + b_1_06·b_5_7 + b_6_12·b_5_9 + b_6_12·b_5_8 + b_4_6·b_7_13
+ b_4_6·b_1_02·b_5_7 + b_4_6·b_1_04·b_3_4 + b_4_6·b_6_12·b_1_1 + b_4_6·b_6_12·b_1_0 + b_4_62·b_3_4
- b_1_12·b_9_24 + b_6_12·b_5_8 + b_6_12·b_1_05 + b_4_6·b_1_17 + b_4_6·b_1_07
+ b_4_6·b_6_12·b_1_1 + b_4_6·b_6_12·b_1_0 + b_4_62·b_1_13 + b_4_62·b_1_03 + c_8_19·b_1_13
- b_6_12·b_1_06 + b_6_122 + b_4_6·b_1_08 + b_4_6·b_6_12·b_1_02
+ b_4_62·b_1_1·b_3_4 + b_4_63
- b_5_8·b_7_13 + b_6_12·b_1_03·b_3_4 + b_4_6·b_1_0·b_7_13 + b_4_6·b_1_03·b_5_9
+ b_4_6·b_1_05·b_3_4
- b_5_9·b_7_13 + b_5_7·b_7_13 + b_6_12·b_1_0·b_5_7 + b_6_12·b_1_06 + b_6_122
+ b_4_6·b_1_0·b_7_15 + b_4_6·b_1_03·b_5_9 + b_4_6·b_1_03·b_5_7 + b_4_6·b_1_08 + b_4_62·b_1_1·b_3_4 + b_4_62·b_1_0·b_3_4 + b_4_62·b_1_04 + b_4_63
- b_5_9·b_7_15 + b_5_7·b_7_15 + b_5_7·b_7_13 + b_1_07·b_5_7 + b_6_12·b_1_1·b_5_8
+ b_6_12·b_1_0·b_5_7 + b_6_12·b_1_03·b_3_4 + b_4_6·b_1_18 + b_4_6·b_1_03·b_5_7 + b_4_6·b_1_08 + b_4_6·b_6_12·b_1_12 + b_4_62·b_1_14 + b_4_62·b_1_04 + a_1_2·b_1_16·b_5_8 + c_8_19·b_1_04
- b_5_9·b_7_15 + b_5_9·b_7_13 + b_5_8·b_7_15 + b_5_8·b_7_13 + b_5_7·b_7_15 + b_5_7·b_7_13
+ b_6_122 + b_4_6·b_1_1·b_7_15 + b_4_6·b_1_03·b_5_7 + b_4_62·b_1_1·b_3_4 + b_4_62·b_1_0·b_3_4 + b_4_62·b_1_0·b_3_3 + b_4_63 + c_8_19·b_1_0·b_3_3
- b_5_9·b_7_15 + b_5_8·b_7_13 + b_5_7·b_7_13 + b_1_05·b_7_15 + b_1_07·b_5_7
+ b_6_12·b_1_1·b_5_8 + b_6_12·b_1_03·b_3_4 + b_6_12·b_1_06 + b_6_122 + b_4_6·b_1_18 + b_4_6·b_1_03·b_5_7 + b_4_6·b_1_08 + b_4_6·b_6_12·b_1_12 + b_4_62·b_1_1·b_3_4 + b_4_62·b_1_14 + b_4_63 + a_1_2·b_1_16·b_5_8 + c_8_19·b_1_0·b_3_4
- b_5_9·b_7_13 + b_5_7·b_7_13 + b_3_3·b_9_24 + b_6_12·b_1_06 + b_4_6·b_1_03·b_5_9
+ b_4_6·b_1_08 + b_4_62·b_1_0·b_3_3 + b_4_62·b_1_04
- b_5_9·b_7_13 + b_5_8·b_7_15 + b_5_8·b_7_13 + b_3_4·b_9_24 + b_1_05·b_7_15 + b_1_07·b_5_7
+ b_6_12·b_1_1·b_5_8 + b_6_12·b_1_06 + b_6_122 + b_4_6·b_1_1·b_7_15 + b_4_6·b_1_18 + b_4_6·b_1_03·b_5_9 + b_4_6·b_1_05·b_3_4 + b_4_6·b_1_08 + b_4_6·b_6_12·b_1_12 + b_4_62·b_1_1·b_3_4 + b_4_62·b_1_14 + b_4_62·b_1_0·b_3_3 + b_4_63 + a_1_2·b_1_16·b_5_8 + c_8_19·b_1_1·b_3_4
- b_5_9·b_7_13 + b_5_8·b_7_15 + b_5_8·b_7_13 + b_5_7·b_7_13 + b_1_03·b_9_24
+ b_1_05·b_7_15 + b_6_12·b_1_1·b_5_8 + b_6_12·b_1_03·b_3_4 + b_6_12·b_1_06 + b_4_6·b_1_1·b_7_15 + b_4_6·b_1_18 + b_4_6·b_1_03·b_5_7 + b_4_6·b_6_12·b_1_12 + b_4_62·b_1_14 + b_4_62·b_1_0·b_3_4 + b_4_62·b_1_04 + a_1_2·b_1_16·b_5_8
- b_6_12·b_7_13 + b_6_12·b_1_04·b_3_4 + b_4_6·b_1_04·b_5_7 + b_4_6·b_1_06·b_3_4
+ b_4_6·b_6_12·b_1_03 + b_4_62·b_5_7 + b_4_62·b_1_02·b_3_4 + b_4_62·b_1_05 + b_4_63·b_1_0
- b_1_04·b_9_24 + b_1_06·b_7_15 + b_6_12·b_7_15 + b_6_12·b_1_12·b_5_8
+ b_6_12·b_1_02·b_5_7 + b_6_122·b_1_0 + b_4_6·b_9_24 + b_4_6·b_1_02·b_7_15 + b_4_6·b_1_04·b_5_7 + b_4_6·b_1_06·b_3_4 + b_4_6·b_1_09 + b_4_6·b_6_12·b_3_4 + b_4_6·b_6_12·b_1_13 + b_4_6·b_6_12·b_1_03 + b_4_62·b_5_7 + b_4_62·b_1_15 + b_4_62·b_1_02·b_3_4 + b_4_63·b_1_0 + b_4_6·c_8_19·b_1_1
- b_7_132 + b_1_09·b_5_7 + b_6_12·b_1_05·b_3_4 + b_4_6·b_1_010
+ b_4_6·b_6_12·b_1_0·b_3_4 + b_4_6·b_6_12·b_1_04 + b_4_62·b_1_0·b_5_9 + b_4_62·b_1_0·b_5_7 + b_4_62·b_1_03·b_3_4 + b_4_62·b_1_03·b_3_3 + c_8_19·b_1_03·b_3_3 + c_8_19·b_1_06 + b_4_6·c_8_19·b_1_02
- b_7_13·b_7_15 + b_7_132 + b_1_07·b_7_15 + b_1_09·b_5_7 + b_6_12·b_1_0·b_7_15
+ b_6_12·b_1_03·b_5_7 + b_6_122·b_1_02 + b_4_6·b_1_03·b_7_15 + b_4_6·b_1_03·b_7_13 + b_4_6·b_1_05·b_5_7 + b_4_6·b_1_07·b_3_4 + b_4_6·b_6_12·b_1_04 + b_4_62·b_1_06 + c_8_19·b_1_0·b_5_9 + c_8_19·b_1_0·b_5_7 + c_8_19·b_1_03·b_3_4
- b_7_152 + b_7_132 + b_5_8·b_9_24 + b_1_09·b_5_7 + b_6_12·b_1_0·b_7_15
+ b_6_12·b_1_03·b_5_7 + b_6_122·b_1_02 + b_4_6·b_1_1·b_9_24 + b_4_6·b_1_15·b_5_8 + b_4_6·b_1_110 + b_4_6·b_1_03·b_7_15 + b_4_6·b_1_07·b_3_4 + b_4_6·b_1_010 + b_4_6·b_6_12·b_1_14 + b_4_6·b_6_12·b_1_0·b_3_4 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_16 + b_4_62·b_1_0·b_5_7 + b_4_63·b_1_12 + a_1_2·b_1_18·b_5_8 + c_8_19·b_1_1·b_5_8 + c_8_19·b_1_0·b_5_9 + c_8_19·b_1_06 + b_4_6·c_8_19·b_1_12
- b_7_152 + b_7_132 + b_1_09·b_5_7 + b_6_12·b_1_0·b_7_15 + b_4_6·b_1_110
+ b_4_6·b_1_0·b_9_24 + b_4_6·b_1_05·b_5_7 + b_4_6·b_1_07·b_3_4 + b_4_6·b_1_010 + b_4_6·b_6_12·b_1_0·b_3_4 + b_4_62·b_1_0·b_5_7 + b_4_62·b_1_03·b_3_4 + b_4_62·b_1_03·b_3_3 + b_4_63·b_1_02 + a_1_2·b_1_18·b_5_8 + c_8_19·b_1_0·b_5_9 + c_8_19·b_1_06
- b_7_13·b_7_15 + b_5_9·b_9_24 + b_6_12·b_1_0·b_7_15 + b_6_12·b_1_03·b_5_7
+ b_4_6·b_1_15·b_5_8 + b_4_6·b_1_05·b_5_7 + b_4_6·b_6_12·b_1_14 + b_4_6·b_6_12·b_1_04 + b_4_62·b_1_1·b_5_8 + b_4_62·b_1_16 + b_4_62·b_1_03·b_3_4 + b_4_62·b_1_06 + b_4_63·b_1_12 + c_8_19·b_1_1·b_5_9
- b_7_13·b_7_15 + b_7_132 + b_5_7·b_9_24 + b_1_09·b_5_7 + b_6_12·b_1_03·b_5_7
+ b_4_6·b_1_05·b_5_7 + b_4_6·b_1_07·b_3_4 + b_4_6·b_1_010 + b_4_6·b_6_12·b_1_0·b_3_4 + b_4_6·b_6_12·b_1_04 + b_4_62·b_1_0·b_5_9 + b_4_62·b_1_0·b_5_7 + b_4_62·b_1_06 + c_8_19·b_1_03·b_3_3 + c_8_19·b_1_06 + c_8_19·a_1_2·b_5_8
- b_6_12·b_9_24 + b_6_12·b_1_04·b_5_7 + b_6_122·b_1_03 + b_4_6·b_1_04·b_7_15
+ b_4_6·b_1_06·b_5_7 + b_4_6·b_6_12·b_5_7 + b_4_6·b_6_12·b_1_15 + b_4_6·b_6_12·b_1_05 + b_4_62·b_7_15 + b_4_62·b_1_12·b_5_8 + b_4_62·b_1_02·b_5_7 + b_4_62·b_1_04·b_3_4 + b_4_62·b_1_07 + b_4_63·b_3_4 + b_4_63·b_1_13 + b_4_63·b_1_03 + b_6_12·c_8_19·b_1_1
- b_7_15·b_9_24 + b_6_12·b_1_05·b_5_7 + b_6_122·b_1_0·b_3_4 + b_4_6·b_1_17·b_5_8
+ b_4_6·b_6_12·b_1_0·b_5_7 + b_4_6·b_6_122 + b_4_62·b_1_18 + b_4_62·b_1_0·b_7_15 + b_4_62·b_1_0·b_7_13 + b_4_62·b_1_03·b_5_7 + b_4_62·b_1_05·b_3_4 + b_4_62·b_1_08 + b_4_63·b_1_1·b_3_4 + b_4_63·b_1_0·b_3_4 + b_4_63·b_1_04 + b_4_64 + c_8_19·b_1_1·b_7_15 + c_8_19·b_1_0·b_7_13 + b_6_12·c_8_19·b_1_02 + b_4_6·c_8_19·b_1_0·b_3_3
- b_7_13·b_9_24 + b_1_09·b_7_15 + b_6_12·b_1_05·b_5_7 + b_6_122·b_1_0·b_3_4
+ b_6_122·b_1_04 + b_4_6·b_1_03·b_9_24 + b_4_6·b_1_05·b_7_15 + b_4_6·b_1_012 + b_4_6·b_6_12·b_1_03·b_3_4 + b_4_62·b_1_0·b_7_13 + b_4_62·b_1_03·b_5_9 + b_4_62·b_1_05·b_3_4 + b_4_62·b_1_08 + b_4_63·b_1_0·b_3_3 + b_4_63·b_1_04 + c_8_19·b_1_03·b_5_9 + c_8_19·b_1_03·b_5_7 + c_8_19·b_1_05·b_3_4 + c_8_19·b_1_08 + b_4_6·c_8_19·b_1_0·b_3_4 + b_4_6·c_8_19·b_1_0·b_3_3 + b_4_6·c_8_19·b_1_04
- b_9_242 + b_6_122·b_1_0·b_5_7 + b_4_6·b_1_09·b_5_7 + b_4_6·b_6_12·b_1_03·b_5_7
+ b_4_6·b_6_12·b_1_05·b_3_4 + b_4_6·b_6_122·b_1_02 + b_4_62·b_1_110 + b_4_62·b_1_03·b_7_15 + b_4_62·b_1_010 + b_4_62·b_6_12·b_1_0·b_3_4 + b_4_62·b_6_12·b_1_04 + b_4_63·b_1_03·b_3_4 + b_4_64·b_1_02 + c_8_19·b_1_03·b_7_13 + b_6_12·c_8_19·b_1_0·b_3_4 + b_6_12·c_8_19·b_1_04 + b_4_6·c_8_19·b_1_0·b_5_7 + b_4_6·c_8_19·b_1_03·b_3_4 + b_4_6·c_8_19·b_1_06 + b_4_62·c_8_19·b_1_02 + c_8_192·b_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_19, a Duflot regular element of degree 8
- b_1_14 + b_1_0·b_3_3 + b_1_04 + b_4_6, an element of degree 4
- b_1_03·b_3_3 + b_4_6·b_1_12 + b_4_6·b_1_02, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, 2, 9, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_3_3 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_4_6 → 0, an element of degree 4
- b_5_7 → 0, an element of degree 5
- b_5_8 → 0, an element of degree 5
- b_5_9 → 0, an element of degree 5
- b_6_12 → 0, an element of degree 6
- b_7_13 → 0, an element of degree 7
- b_7_15 → 0, an element of degree 7
- c_8_19 → c_1_08, an element of degree 8
- b_9_24 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_4_6 → c_1_24 + c_1_13·c_1_2, an element of degree 4
- b_5_7 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_5_8 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_9 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_12 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_15·c_1_2, an element of degree 6
- b_7_13 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_15·c_1_22
+ c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_04·c_1_13, an element of degree 7
- b_7_15 → c_1_13·c_1_24 + c_1_15·c_1_22 + c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_2
+ c_1_02·c_1_15 + c_1_03·c_1_14 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
- c_8_19 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22
+ c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
- b_9_24 → c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_16·c_1_23 + c_1_18·c_1_2
+ c_1_0·c_1_14·c_1_24 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_17 + c_1_03·c_1_14·c_1_22 + c_1_03·c_1_15·c_1_2 + c_1_03·c_1_16 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_14·c_1_2 + c_1_05·c_1_12·c_1_22 + c_1_05·c_1_13·c_1_2 + c_1_05·c_1_14 + c_1_06·c_1_1·c_1_22 + c_1_06·c_1_12·c_1_2 + c_1_06·c_1_13, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_3_3 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_4_6 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_7 → 0, an element of degree 5
- b_5_8 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_9 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_6_12 → c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23, an element of degree 6
- b_7_13 → 0, an element of degree 7
- b_7_15 → c_1_15·c_1_22 + c_1_16·c_1_2, an element of degree 7
- c_8_19 → c_1_14·c_1_24 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_24 → c_1_02·c_1_13·c_1_24 + c_1_02·c_1_15·c_1_22 + c_1_04·c_1_1·c_1_24
+ c_1_04·c_1_13·c_1_22 + c_1_04·c_1_15 + c_1_08·c_1_1, an element of degree 9
|