Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 971 of order 128
General information on the group
- The group has 3 minimal generators and exponent 16.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t7 − t5 − t4 + t3 + t2 − t − 1 |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-6,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_3_3, a nilpotent element of degree 3
- a_4_3, a nilpotent element of degree 4
- b_4_4, an element of degree 4
- a_5_6, a nilpotent element of degree 5
- b_5_5, an element of degree 5
- b_6_8, an element of degree 6
- a_7_8, a nilpotent element of degree 7
- a_8_6, a nilpotent element of degree 8
- c_8_11, a Duflot regular element of degree 8
- a_10_15, a nilpotent element of degree 10
Ring relations
There are 59 minimal relations of maximal degree 20:
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_1_04
- b_1_1·a_3_3
- a_1_2·a_3_3
- a_4_3·b_1_1 + a_1_02·a_3_3
- a_4_3·a_1_0 + a_1_02·a_3_3
- a_4_3·a_1_2
- b_4_4·a_1_2
- a_3_32 + b_4_4·a_1_02
- a_1_2·a_5_6
- a_1_0·b_5_5
- a_4_3·a_3_3 + b_4_4·a_1_03
- b_1_12·a_5_6 + a_4_3·a_3_3
- b_6_8·a_1_0 + b_4_4·a_3_3
- b_6_8·a_1_2
- a_4_32
- a_1_03·a_5_6
- a_3_3·b_5_5
- b_1_1·a_7_8 + a_4_3·b_4_4 + b_4_4·a_1_0·a_3_3
- a_3_3·a_5_6 + a_1_0·a_7_8
- a_1_2·a_7_8
- a_4_3·b_5_5 + b_4_4·a_1_02·a_3_3
- b_6_8·a_3_3 + b_4_42·a_1_0 + b_4_4·a_1_02·a_3_3
- a_4_3·a_5_6 + a_1_02·a_7_8
- b_6_8·b_1_13 + b_4_4·b_5_5 + b_4_4·b_1_15 + b_4_42·b_1_1 + a_1_2·b_1_13·b_5_5
+ a_8_6·b_1_1 + a_4_3·a_5_6 + b_4_4·a_1_02·a_3_3
- a_8_6·a_1_0 + a_4_3·a_5_6
- a_8_6·a_1_2
- a_5_6·b_5_5 + b_4_4·b_1_1·a_5_6
- b_4_4·b_1_1·a_5_6 + a_4_3·b_6_8 + b_4_42·a_1_02
- a_3_3·a_7_8 + b_4_4·a_1_0·a_5_6
- a_5_62 + b_4_4·a_1_0·a_5_6 + c_8_11·a_1_02
- b_5_52 + b_4_4·b_1_16 + b_4_42·b_1_12 + a_1_2·b_1_14·b_5_5 + c_8_11·a_1_22
- b_6_8·a_5_6 + b_4_4·a_7_8 + b_4_4·a_1_02·a_5_6
- a_4_3·a_7_8 + b_4_4·a_1_02·a_5_6
- a_8_6·a_3_3 + b_4_4·a_1_02·a_5_6
- b_6_8·b_5_5 + b_4_4·b_1_12·b_5_5 + b_4_4·b_6_8·b_1_1 + a_10_15·b_1_1
+ b_4_4·a_1_02·a_5_6 + b_4_42·a_1_03
- a_10_15·a_1_0 + b_4_4·a_1_02·a_5_6 + b_4_42·a_1_03
- a_10_15·a_1_2
- b_6_82 + b_4_42·b_1_14 + b_4_43 + b_4_42·a_1_0·a_3_3
- b_5_5·a_7_8 + a_4_3·b_4_42 + b_4_42·a_1_0·a_3_3
- a_5_6·a_7_8 + b_4_4·a_1_0·a_7_8 + c_8_11·a_1_0·a_3_3
- a_4_3·a_8_6
- b_6_8·a_7_8 + b_4_42·a_5_6
- a_8_6·a_5_6 + b_4_4·a_1_02·a_7_8 + c_8_11·a_1_02·a_3_3
- a_10_15·a_3_3 + b_4_4·a_1_02·a_7_8 + b_4_42·a_1_02·a_3_3
- a_10_15·b_1_13 + a_8_6·b_5_5 + b_4_4·a_8_6·b_1_1
- a_7_82 + b_4_42·a_1_0·a_5_6 + b_4_4·c_8_11·a_1_02
- b_6_8·a_8_6 + b_4_4·a_10_15 + b_4_4·a_8_6·b_1_12 + b_4_43·a_1_02
- a_4_3·a_10_15
- a_8_6·a_7_8 + b_4_42·a_1_02·a_5_6 + b_4_4·c_8_11·a_1_03
- a_10_15·a_5_6 + b_4_4·c_8_11·a_1_03
- a_10_15·b_5_5 + b_4_4·a_10_15·b_1_1 + b_4_4·a_8_6·b_1_13
- a_8_62
- b_6_8·a_10_15 + b_4_4·a_10_15·b_1_12 + b_4_42·a_8_6 + b_4_43·a_1_0·a_3_3
- a_10_15·a_7_8 + b_4_4·c_8_11·a_1_02·a_3_3
- a_8_6·a_10_15
- a_10_152
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_11, a Duflot regular element of degree 8
- b_1_14 + b_4_4, an element of degree 4
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 2, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_3_3 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → 0, an element of degree 4
- a_5_6 → 0, an element of degree 5
- b_5_5 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- a_7_8 → 0, an element of degree 7
- a_8_6 → 0, an element of degree 8
- c_8_11 → c_1_08, an element of degree 8
- a_10_15 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_3_3 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_4 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_6 → 0, an element of degree 5
- b_5_5 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_6_8 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22, an element of degree 6
- a_7_8 → 0, an element of degree 7
- a_8_6 → 0, an element of degree 8
- c_8_11 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- a_10_15 → 0, an element of degree 10
|