Cohomology of group number 98 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 16.
  • It is non-abelian.
  • It has p-Rank 2.
  • Its center has rank 1.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 2 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    t7  +  t5  +  t4  +  t2  +  1

    (t  −  1)2 · (t2  +  1)2 · (t4  +  1)
  • The a-invariants are -∞,-2,-2. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 13 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_1, a nilpotent element of degree 2
  4. a_3_1, a nilpotent element of degree 3
  5. a_4_1, a nilpotent element of degree 4
  6. b_4_2, an element of degree 4
  7. a_5_2, a nilpotent element of degree 5
  8. a_5_3, a nilpotent element of degree 5
  9. a_5_4, a nilpotent element of degree 5
  10. a_6_4, a nilpotent element of degree 6
  11. a_7_3, a nilpotent element of degree 7
  12. a_8_3, a nilpotent element of degree 8
  13. c_8_5, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 65 minimal relations of maximal degree 16:

  1. a_1_02
  2. a_1_0·a_1_1
  3. a_1_13
  4. a_2_1·a_1_0
  5. a_2_12
  6. a_2_1·a_1_12
  7. a_1_0·a_3_1
  8. a_1_12·a_3_1
  9. a_4_1·a_1_1 + a_2_1·a_3_1
  10. a_4_1·a_1_0
  11. b_4_2·a_1_0
  12. a_2_1·a_4_1
  13. a_1_1·a_5_2 + b_4_2·a_1_12 + a_2_1·a_1_1·a_3_1
  14. a_1_0·a_5_2 + a_2_1·a_1_1·a_3_1
  15. a_2_1·b_4_2 + a_1_1·a_5_3
  16. a_1_0·a_5_3 + a_2_1·a_1_1·a_3_1
  17. a_2_1·b_4_2 + a_3_12 + a_1_1·a_5_4
  18. a_1_0·a_5_4
  19. a_2_1·a_5_3 + a_2_1·a_5_2
  20. a_2_1·a_5_2 + a_1_12·a_5_3
  21. a_4_1·a_3_1 + a_2_1·a_5_4 + a_2_1·a_5_2
  22. a_2_1·a_5_2 + a_1_12·a_5_4
  23. a_6_4·a_1_1 + a_4_1·a_3_1
  24. a_6_4·a_1_0
  25. a_4_12
  26. a_3_1·a_5_2 + b_4_2·a_1_1·a_3_1
  27. a_4_1·b_4_2 + a_3_1·a_5_3 + b_4_2·a_1_1·a_3_1
  28. a_2_1·a_1_1·a_5_4
  29. a_2_1·a_6_4
  30. a_4_1·b_4_2 + a_3_1·a_5_4 + a_1_1·a_7_3
  31. a_1_0·a_7_3
  32. a_4_1·a_5_3
  33. a_4_1·a_5_2 + a_1_1·a_3_1·a_5_3
  34. b_4_2·a_5_2 + b_4_22·a_1_1 + a_6_4·a_3_1 + a_4_1·a_5_4
  35. b_4_2·a_5_2 + b_4_22·a_1_1 + a_4_1·a_5_4 + a_4_1·a_5_2 + a_2_1·a_7_3
  36. b_4_2·a_5_2 + b_4_22·a_1_1 + a_1_12·a_7_3
  37. a_8_3·a_1_1 + a_4_1·a_5_4 + a_4_1·a_5_2
  38. a_8_3·a_1_0
  39. a_5_22 + b_4_22·a_1_12
  40. a_5_32 + b_4_2·a_1_1·a_5_3
  41. a_5_32 + a_5_2·a_5_4 + a_5_2·a_5_3 + b_4_2·a_1_1·a_5_4
  42. a_4_1·a_6_4
  43. b_4_2·a_6_4 + a_5_3·a_5_4 + a_5_32
  44. a_5_42 + a_5_2·a_5_4 + a_3_1·a_7_3
  45. a_5_32 + a_5_2·a_5_3 + a_2_1·a_1_1·a_7_3
  46. a_5_42 + a_5_32 + a_5_2·a_5_4 + a_5_2·a_5_3 + c_8_5·a_1_12
  47. a_2_1·a_8_3
  48. a_6_4·a_5_3 + a_1_1·a_5_3·a_5_4 + b_4_2·a_1_12·a_5_3
  49. a_6_4·a_5_2 + a_1_1·a_5_3·a_5_4 + b_4_2·a_1_12·a_5_3
  50. a_6_4·a_5_4 + a_4_1·a_7_3
  51. a_6_4·a_5_4 + a_2_1·c_8_5·a_1_1
  52. a_8_3·a_3_1 + a_6_4·a_5_4
  53. a_6_42
  54. a_5_2·a_7_3 + b_4_2·a_1_1·a_7_3
  55. a_5_4·a_7_3 + a_5_3·a_7_3 + c_8_5·a_1_1·a_3_1
  56. a_4_1·a_8_3
  57. b_4_2·a_8_3 + a_5_3·a_7_3 + a_5_2·a_7_3
  58. a_6_4·a_7_3 + a_2_1·c_8_5·a_3_1
  59. a_8_3·a_5_3
  60. a_8_3·a_5_2 + a_1_1·a_5_3·a_7_3 + b_4_2·a_1_12·a_7_3
  61. a_8_3·a_5_4 + a_6_4·a_7_3
  62. a_7_32 + a_1_12·a_5_3·a_7_3 + c_8_5·a_1_1·a_5_4 + c_8_5·a_1_1·a_5_3
       + b_4_2·c_8_5·a_1_12
  63. a_6_4·a_8_3
  64. a_8_3·a_7_3 + a_2_1·c_8_5·a_5_4
  65. a_8_32


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_5, a Duflot regular element of degree 8
    2. b_4_2, an element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, 6, 10].
  • The filter degree type of any filter regular HSOP is [-1, -2, -2].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. a_3_10, an element of degree 3
  5. a_4_10, an element of degree 4
  6. b_4_20, an element of degree 4
  7. a_5_20, an element of degree 5
  8. a_5_30, an element of degree 5
  9. a_5_40, an element of degree 5
  10. a_6_40, an element of degree 6
  11. a_7_30, an element of degree 7
  12. a_8_30, an element of degree 8
  13. c_8_5c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_10, an element of degree 2
  4. a_3_10, an element of degree 3
  5. a_4_10, an element of degree 4
  6. b_4_2c_1_14, an element of degree 4
  7. a_5_20, an element of degree 5
  8. a_5_30, an element of degree 5
  9. a_5_40, an element of degree 5
  10. a_6_40, an element of degree 6
  11. a_7_30, an element of degree 7
  12. a_8_30, an element of degree 8
  13. c_8_5c_1_18 + c_1_04·c_1_14 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009