Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 26531 of order 256
General information on the group
- The group is also known as Syl2Sym10, the Sylow 2-subgroup of Symmetric Group Sym10.
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 5.
- Its centre has rank 2.
- It has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 4, 4, 5, 5 and 5, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 4.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1)·(1) |
| (1 + t) · ( − 1 + t)5 |
- The a-invariants are -∞,-∞,-∞,-∞,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Ring generators
The cohomology ring has 10 minimal generators of maximal degree 4:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- c_1_3, a Duflot element of degree 1
- b_2_8, an element of degree 2
- b_2_9, an element of degree 2
- b_2_10, an element of degree 2
- b_3_22, an element of degree 3
- b_3_23, an element of degree 3
- c_4_45, a Duflot element of degree 4
Ring relations
There are 14 minimal relations of maximal degree 6:
- b_1_0·b_1_1
- b_1_0·b_1_2
- b_2_8·b_1_2
- b_2_9·b_1_1
- b_2_10·b_1_0
- b_2_8·b_2_9
- b_1_0·b_3_22
- b_1_0·b_3_23
- b_1_2·b_3_22 + b_1_1·b_3_23
- b_2_9·b_3_22
- b_2_8·b_3_23
- b_3_232 + b_2_10·b_1_2·b_3_23 + b_2_9·b_2_102 + c_4_45·b_1_22
- b_3_22·b_3_23 + b_2_10·b_1_1·b_3_23 + c_4_45·b_1_1·b_1_2
- b_3_222 + b_2_10·b_1_1·b_3_22 + b_2_8·b_2_102 + c_4_45·b_1_12
Data used for the Benson test
- We proved completion in degree 7 using the Benson criterion.
- However, the last relation was already found in degree 6 and the last generator in degree 4.
- The following is a filter regular homogeneous system of parameters:
- c_4_45, an element of degree 4
- c_1_3, an element of degree 1
- b_1_2·b_3_23 + b_1_24 + b_1_1·b_3_22 + b_1_12·b_1_22 + b_1_14 + b_1_04
+ b_2_10·b_1_22 + b_2_10·b_1_1·b_1_2 + b_2_102 + b_2_92 + b_2_82, an element of degree 4
- b_1_23·b_3_23 + b_1_1·b_1_22·b_3_23 + b_1_12·b_1_24 + b_1_13·b_3_23
+ b_1_13·b_3_22 + b_1_14·b_1_22 + b_2_10·b_1_24 + b_2_10·b_1_13·b_1_2 + b_2_102·b_1_22 + b_2_102·b_1_1·b_1_2 + b_2_102·b_1_12 + b_2_9·b_1_2·b_3_23 + b_2_9·b_2_10·b_1_22 + b_2_9·b_2_102 + b_2_92·b_1_22 + b_2_92·b_1_02 + b_2_8·b_1_1·b_3_22 + b_2_8·b_2_102 + b_2_82·b_1_12 + b_2_82·b_1_02, an element of degree 6
- b_1_2 + b_1_1, an element of degree 1
- A Duflot regular sequence is given by c_4_45, c_1_3.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, -1, 10, 11].
- We found that there exists some filter regular HSOP over a finite extension field, formed by the first 2 terms of the above HSOP, together with 3 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- b_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_2_10 → 0, an element of degree 2
- b_3_22 → 0, an element of degree 3
- b_3_23 → 0, an element of degree 3
- c_4_45 → c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_1 + c_1_0, an element of degree 1
- b_2_8 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_2_10 → 0, an element of degree 2
- b_3_22 → 0, an element of degree 3
- b_3_23 → 0, an element of degree 3
- c_4_45 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_1 + c_1_0, an element of degree 1
- b_2_8 → 0, an element of degree 2
- b_2_9 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- b_2_10 → 0, an element of degree 2
- b_3_22 → 0, an element of degree 3
- b_3_23 → 0, an element of degree 3
- c_4_45 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_4, an element of degree 1
- c_1_3 → c_1_1 + c_1_0, an element of degree 1
- b_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_2_10 → c_1_2·c_1_4 + c_1_22 + c_1_1·c_1_4 + c_1_1·c_1_3, an element of degree 2
- b_3_22 → c_1_2·c_1_3·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_3·c_1_4 + c_1_12·c_1_3, an element of degree 3
- b_3_23 → c_1_2·c_1_42 + c_1_22·c_1_4 + c_1_1·c_1_42 + c_1_12·c_1_4, an element of degree 3
- c_4_45 → c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_3·c_1_4
+ c_1_12·c_1_2·c_1_4 + c_1_12·c_1_22 + c_1_13·c_1_4 + c_1_13·c_1_3 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_1 + c_1_0, an element of degree 1
- b_2_8 → c_1_42 + c_1_3·c_1_4, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_2_10 → c_1_2·c_1_4 + c_1_22 + c_1_1·c_1_3, an element of degree 2
- b_3_22 → c_1_2·c_1_42 + c_1_2·c_1_3·c_1_4 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_12·c_1_3, an element of degree 3
- b_3_23 → 0, an element of degree 3
- c_4_45 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_4
+ c_1_1·c_1_22·c_1_3 + c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_2·c_1_4 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- c_1_3 → c_1_1 + c_1_0, an element of degree 1
- b_2_8 → 0, an element of degree 2
- b_2_9 → c_1_42 + c_1_3·c_1_4, an element of degree 2
- b_2_10 → c_1_2·c_1_4 + c_1_2·c_1_3 + c_1_22 + c_1_1·c_1_3, an element of degree 2
- b_3_22 → 0, an element of degree 3
- b_3_23 → c_1_2·c_1_42 + c_1_2·c_1_32 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_32
+ c_1_12·c_1_3, an element of degree 3
- c_4_45 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_4
+ c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_2·c_1_4 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_14, an element of degree 4
|