Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 3 of order 27
General information on the group
- The group is also known as E27, the Extraspecial 3-group of order 27 and exponent 3.
- The group has 2 minimal generators and exponent 3.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(t2 + 1)2 |
| (t − 1)2 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_2_0, an element of degree 2
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- c_6_8, a Duflot regular element of degree 6
Ring relations
There are 4 "obvious" relations:
a_1_02, a_1_12, a_3_42, a_3_52
Apart from that, there are 17 minimal relations of maximal degree 6:
- a_1_0·a_1_1
- b_2_1·a_1_0 − b_2_0·a_1_1
- b_2_2·a_1_1 + b_2_1·a_1_1 − b_2_0·a_1_1
- b_2_2·a_1_0 − b_2_1·a_1_1 + b_2_0·a_1_1
- b_2_3·a_1_0 − b_2_0·a_1_1
- − b_2_12 + b_2_0·b_2_2 + b_2_0·b_2_1
- − b_2_22 + b_2_1·b_2_3 + b_2_1·b_2_2 − b_2_12
- − b_2_1·b_2_2 − b_2_12 + b_2_0·b_2_3
- − b_2_22 + b_2_1·b_2_2 + a_1_1·a_3_4
- − b_2_1·b_2_2 − b_2_12 + b_2_0·b_2_1 + a_1_0·a_3_4
- − b_2_2·b_2_3 + b_2_22 + a_1_1·a_3_5
- − b_2_22 − b_2_12 + b_2_0·b_2_1 + a_1_0·a_3_5
- b_2_3·a_3_4 − b_2_1·a_3_4
- − b_2_2·a_3_4 + b_2_1·a_3_5 + b_2_1·a_3_4 + b_2_0·b_2_1·a_1_1 − b_2_02·a_1_1
- − b_2_1·a_3_4 + b_2_0·a_3_5 − b_2_0·a_3_4 − b_2_0·b_2_1·a_1_1 + b_2_02·a_1_1
- b_2_2·a_3_5 + b_2_0·b_2_1·a_1_1 − b_2_02·a_1_1
- a_3_4·a_3_5 + b_2_0·a_1_1·a_3_5 + b_2_0·a_1_0·a_3_5 − b_2_0·a_1_0·a_3_4
Data used for Benson′s test
- Benson′s completion test succeeded in degree 7.
- However, the last relation was already found in degree 6 and the last generator in degree 6.
- The following is a filter regular homogeneous system of parameters:
- c_6_8, a Duflot regular element of degree 6
- b_2_32 + b_2_22 − b_2_1·b_2_2 − b_2_12 + b_2_02, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 1 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- c_6_8 → − c_2_03, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_2_0 → c_2_2, an element of degree 2
- b_2_1 → − a_1_0·a_1_1, an element of degree 2
- b_2_2 → a_1_0·a_1_1, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_4 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_5 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- c_6_8 → − c_2_22·a_1_0·a_1_1 + c_2_1·c_2_22 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- b_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → a_1_0·a_1_1, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- c_6_8 → c_2_1·c_2_22 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- b_2_0 → c_2_2, an element of degree 2
- b_2_1 → − a_1_0·a_1_1 + c_2_2, an element of degree 2
- b_2_2 → − a_1_0·a_1_1, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_5 → c_2_2·a_1_0 − c_2_1·a_1_1, an element of degree 3
- c_6_8 → c_2_1·c_2_22 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → − a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- b_2_0 → − c_2_2, an element of degree 2
- b_2_1 → a_1_0·a_1_1 + c_2_2, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → c_2_2·a_1_1 + c_2_2·a_1_0 − c_2_1·a_1_1, an element of degree 3
- a_3_5 → − c_2_2·a_1_1, an element of degree 3
- c_6_8 → c_2_22·a_1_0·a_1_1 + c_2_23 + c_2_1·c_2_22 − c_2_13, an element of degree 6
|