Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 12 of order 625
General information on the group
- The group is also known as E125xC5, the Direct product E125 x C_5.
- The group has 3 minimal generators and exponent 5.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t2 + 1) · (t6 + t2 + 1) |
| (t − 1)3 · (t4 − t3 + t2 − t + 1) · (t4 + t3 + t2 + t + 1) |
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_2, a nilpotent element of degree 2
- a_2_3, a nilpotent element of degree 2
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_3_11, a nilpotent element of degree 3
- a_3_12, a nilpotent element of degree 3
- a_7_43, a nilpotent element of degree 7
- b_8_46, an element of degree 8
- a_9_65, a nilpotent element of degree 9
- c_10_82, a Duflot regular element of degree 10
Ring relations
There are 7 "obvious" relations:
a_1_02, a_1_12, a_1_22, a_3_112, a_3_122, a_7_432, a_9_652
Apart from that, there are 44 minimal relations of maximal degree 17:
- a_1_0·a_1_1
- a_2_2·a_1_0
- a_2_3·a_1_1
- a_2_3·a_1_0 − a_2_2·a_1_1
- b_2_5·a_1_0 − b_2_4·a_1_1
- a_2_22
- a_2_2·a_2_3
- a_2_32
- − 2·a_2_3·b_2_4 − a_2_2·b_2_5 + a_1_1·a_3_11
- a_2_2·b_2_4 + a_1_0·a_3_11
- − a_2_3·b_2_5 + a_1_1·a_3_12
- a_2_3·b_2_4 + 2·a_2_2·b_2_5 + a_1_0·a_3_12
- a_2_2·a_3_11
- − b_2_5·a_3_11 + b_2_4·a_3_12 + 2·b_2_4·b_2_5·a_1_1 + 2·b_2_42·a_1_1
- − a_2_3·a_3_11 + a_2_2·a_3_12
- a_2_3·a_3_12
- a_1_1·a_7_43 − b_2_52·a_1_1·a_3_12 + 2·b_2_4·b_2_5·a_1_1·a_3_12
− 2·b_2_42·a_1_1·a_3_12 + 2·b_2_42·a_1_0·a_3_12
- a_1_0·a_7_43 − b_2_4·b_2_5·a_1_1·a_3_12 + 2·b_2_42·a_1_1·a_3_12
− 2·b_2_42·a_1_0·a_3_12 + 2·b_2_42·a_1_0·a_3_11
- b_2_5·a_7_43 − b_2_53·a_3_12 + 2·b_2_4·b_2_52·a_3_12 − 2·b_2_4·b_2_53·a_1_1
− 2·b_2_42·b_2_5·a_3_12 + 2·b_2_42·b_2_52·a_1_1 + 2·b_2_43·a_3_12 + 2·b_2_43·b_2_5·a_1_1 + b_2_44·a_1_1
- b_2_4·a_7_43 − b_2_4·b_2_52·a_3_12 + 2·b_2_4·b_2_53·a_1_1 + 2·b_2_42·b_2_5·a_3_12
− 2·b_2_42·b_2_52·a_1_1 − 2·b_2_43·a_3_12 + 2·b_2_43·a_3_11 + 2·b_2_43·b_2_5·a_1_1 − 2·b_2_44·a_1_1
- a_2_2·a_7_43
- a_2_3·a_7_43
- b_8_46·a_1_1 − b_2_4·b_2_53·a_1_1 + b_2_42·b_2_52·a_1_1 + 2·b_2_43·b_2_5·a_1_1
− b_2_44·a_1_1
- b_8_46·a_1_0 − b_2_4·b_2_53·a_1_1 − b_2_42·b_2_52·a_1_1 + b_2_43·b_2_5·a_1_1
+ 2·b_2_44·a_1_1
- a_3_12·a_7_43 + 2·b_2_4·b_2_52·a_1_1·a_3_12 − 2·b_2_42·b_2_5·a_1_1·a_3_12
− 2·b_2_43·a_1_1·a_3_12 − b_2_43·a_1_0·a_3_12
- a_3_11·a_7_43 + b_2_4·b_2_52·a_1_1·a_3_12 − b_2_42·b_2_5·a_1_1·a_3_12
− 2·b_2_43·a_1_1·a_3_12 − 2·b_2_43·a_1_0·a_3_12
- b_2_5·b_8_46 − b_2_4·b_2_54 + b_2_42·b_2_53 + 2·b_2_43·b_2_52 − b_2_44·b_2_5
− 2·b_2_53·a_1_1·a_3_12 + b_2_4·b_2_52·a_1_1·a_3_12 − b_2_42·b_2_5·a_1_1·a_3_12 + 2·b_2_43·a_1_1·a_3_12 − 2·b_2_43·a_1_0·a_3_12
- b_2_4·b_8_46 − b_2_4·b_2_54 − b_2_42·b_2_53 + b_2_43·b_2_52 + 2·b_2_44·b_2_5
− 2·b_2_4·b_2_52·a_1_1·a_3_12 + b_2_42·b_2_5·a_1_1·a_3_12 − b_2_43·a_1_1·a_3_12 + 2·b_2_43·a_1_0·a_3_12 − 2·b_2_43·a_1_0·a_3_11
- a_2_2·b_8_46 + b_2_4·b_2_52·a_1_1·a_3_12 + b_2_42·b_2_5·a_1_1·a_3_12
− b_2_43·a_1_1·a_3_12 − 2·b_2_43·a_1_0·a_3_12
- a_2_3·b_8_46 − b_2_4·b_2_52·a_1_1·a_3_12 + b_2_42·b_2_5·a_1_1·a_3_12
+ 2·b_2_43·a_1_1·a_3_12 − b_2_43·a_1_0·a_3_12
- a_1_1·a_9_65 − b_2_53·a_1_1·a_3_12 + b_2_4·b_2_52·a_1_1·a_3_12
+ b_2_42·b_2_5·a_1_1·a_3_12 + 2·b_2_43·a_1_1·a_3_12 + b_2_43·a_1_0·a_3_12
- a_1_0·a_9_65 + 2·b_2_4·b_2_52·a_1_1·a_3_12 + b_2_42·b_2_5·a_1_1·a_3_12
+ b_2_43·a_1_1·a_3_12 + 2·b_2_43·a_1_0·a_3_12 − 2·b_2_43·a_1_0·a_3_11
- b_8_46·a_3_12 − b_2_4·b_2_53·a_3_12 + b_2_42·b_2_52·a_3_12 + 2·b_2_43·b_2_5·a_3_12
− b_2_44·a_3_12
- b_8_46·a_3_11 − b_2_4·b_2_53·a_3_12 − b_2_42·b_2_52·a_3_12 + b_2_42·b_2_53·a_1_1
+ b_2_43·b_2_5·a_3_12 + 2·b_2_44·a_3_12 + b_2_44·b_2_5·a_1_1 + 2·b_2_45·a_1_1
- b_2_5·a_9_65 − b_2_54·a_3_12 + b_2_4·b_2_53·a_3_12 + b_2_42·b_2_52·a_3_12
+ 2·b_2_42·b_2_53·a_1_1 + 2·b_2_43·b_2_5·a_3_12 + b_2_44·a_3_12 − b_2_44·b_2_5·a_1_1 − b_2_45·a_1_1
- b_2_4·a_9_65 + 2·b_2_4·b_2_53·a_3_12 + b_2_42·b_2_52·a_3_12
− 2·b_2_42·b_2_53·a_1_1 + b_2_43·b_2_5·a_3_12 + 2·b_2_43·b_2_52·a_1_1 + 2·b_2_44·a_3_12 − 2·b_2_44·a_3_11 − 2·b_2_45·a_1_1
- a_2_2·a_9_65
- a_2_3·a_9_65
- a_3_12·a_9_65 − 2·b_2_42·b_2_52·a_1_1·a_3_12 + b_2_44·a_1_1·a_3_12
+ b_2_44·a_1_0·a_3_12
- a_3_11·a_9_65 − 2·b_2_42·b_2_52·a_1_1·a_3_12 + 2·b_2_43·b_2_5·a_1_1·a_3_12
+ b_2_44·a_1_1·a_3_12
- b_8_46·a_7_43 − b_2_44·b_2_52·a_3_12 − 2·b_2_45·b_2_5·a_3_12
− 2·b_2_45·b_2_52·a_1_1 + 2·b_2_46·a_3_12 − b_2_47·a_1_1
- b_8_462 + 2·b_2_44·b_2_54 − b_2_45·b_2_53 + 2·b_2_46·b_2_52 + b_2_47·b_2_5
− b_2_44·b_2_52·a_1_1·a_3_12 − b_2_45·b_2_5·a_1_1·a_3_12 + b_2_46·a_1_0·a_3_12
- a_7_43·a_9_65 + b_2_45·b_2_5·a_1_1·a_3_12 + 2·b_2_46·a_1_0·a_3_12
- b_8_46·a_9_65 − b_2_44·b_2_53·a_3_12 + 2·b_2_45·b_2_52·a_3_12
− b_2_45·b_2_53·a_1_1 − 2·b_2_46·b_2_5·a_3_12 + 2·b_2_46·b_2_52·a_1_1 + 2·b_2_47·a_3_12 − b_2_48·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 17.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_6, a Duflot regular element of degree 2
- c_10_82, a Duflot regular element of degree 10
- b_8_46 − b_2_54 − b_2_4·b_2_53 + b_2_42·b_2_52 + 2·b_2_43·b_2_5 − b_2_44, an element of degree 8
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 17].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- a_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_2_1, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → 0, an element of degree 3
- a_7_43 → 0, an element of degree 7
- b_8_46 → 0, an element of degree 8
- a_9_65 → 0, an element of degree 9
- c_10_82 → − c_2_25, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → − a_1_1·a_1_2, an element of degree 2
- a_2_3 → 0, an element of degree 2
- b_2_4 → c_2_5, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_3_12 → 0, an element of degree 3
- a_7_43 → 2·c_2_53·a_1_1 − 2·c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → 2·c_2_53·a_1_1·a_1_2, an element of degree 8
- a_9_65 → − 2·c_2_54·a_1_1 + 2·c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → 2·c_2_54·a_1_1·a_1_2 + c_2_4·c_2_54 − c_2_45, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- a_2_3 → a_1_1·a_1_2, an element of degree 2
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_2_5, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → 0, an element of degree 3
- a_3_12 → − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_7_43 → − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → 2·c_2_53·a_1_1·a_1_2, an element of degree 8
- a_9_65 → − c_2_54·a_1_1 + c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → 2·c_2_54·a_1_1·a_1_2 + c_2_4·c_2_54 − c_2_45, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → − a_1_1·a_1_2, an element of degree 2
- a_2_3 → a_1_1·a_1_2, an element of degree 2
- b_2_4 → c_2_5, an element of degree 2
- b_2_5 → c_2_5, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → 2·c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_3_12 → − 2·c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_7_43 → − c_2_53·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → 2·c_2_53·a_1_1·a_1_2 − c_2_54, an element of degree 8
- a_9_65 → − 2·c_2_54·a_1_2 − c_2_54·a_1_1 + c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → − c_2_54·a_1_1·a_1_2 + c_2_55 + c_2_4·c_2_54 − c_2_45, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 2·a_1_2, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → − 2·a_1_1·a_1_2, an element of degree 2
- a_2_3 → a_1_1·a_1_2, an element of degree 2
- b_2_4 → 2·c_2_5, an element of degree 2
- b_2_5 → c_2_5, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → − c_2_5·a_1_2 − 2·c_2_5·a_1_1 + 2·c_2_4·a_1_2, an element of degree 3
- a_3_12 → c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_7_43 → − 2·c_2_53·a_1_2 + c_2_53·a_1_1 − c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → − 2·c_2_54, an element of degree 8
- a_9_65 → − 2·c_2_54·a_1_2 + 2·c_2_54·a_1_1 − 2·c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → c_2_54·a_1_1·a_1_2 − 2·c_2_55 + c_2_4·c_2_54 − c_2_45, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 2·a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → − a_1_1·a_1_2, an element of degree 2
- a_2_3 → 2·a_1_1·a_1_2, an element of degree 2
- b_2_4 → c_2_5, an element of degree 2
- b_2_5 → 2·c_2_5, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → − c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_3_12 → c_2_5·a_1_2 − 2·c_2_5·a_1_1 + 2·c_2_4·a_1_2, an element of degree 3
- a_7_43 → − c_2_53·a_1_2 − 2·c_2_53·a_1_1 + 2·c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → c_2_53·a_1_1·a_1_2 + c_2_54, an element of degree 8
- a_9_65 → − c_2_54·a_1_2 + c_2_54·a_1_1 − c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → c_2_54·a_1_1·a_1_2 + c_2_4·c_2_54 − c_2_45, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → − a_1_2, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_1_2 → a_1_0, an element of degree 1
- a_2_2 → a_1_1·a_1_2, an element of degree 2
- a_2_3 → a_1_1·a_1_2, an element of degree 2
- b_2_4 → − c_2_5, an element of degree 2
- b_2_5 → c_2_5, an element of degree 2
- c_2_6 → c_2_3, an element of degree 2
- a_3_11 → − 2·c_2_5·a_1_2 + c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_12 → 2·c_2_5·a_1_2 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
- a_7_43 → c_2_53·a_1_2 − 2·c_2_53·a_1_1 + 2·c_2_4·c_2_52·a_1_2, an element of degree 7
- b_8_46 → − 2·c_2_53·a_1_1·a_1_2 + c_2_54, an element of degree 8
- a_9_65 → 2·c_2_54·a_1_2 − 2·c_2_54·a_1_1 + 2·c_2_4·c_2_53·a_1_2, an element of degree 9
- c_10_82 → 2·c_2_54·a_1_1·a_1_2 − c_2_55 + c_2_4·c_2_54 − c_2_45, an element of degree 10
|