Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 14 of order 625
General information on the group
- The group is also known as E125*C25, the Central product E125 * C_25.
- The group has 3 minimal generators and exponent 25.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(t2 + t + 1) · (t6 − t5 + t4 + 1) |
| (t − 1)2 · (t4 − t3 + t2 − t + 1) · (t4 + t3 + t2 + t + 1) |
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_3, an element of degree 2
- b_2_4, an element of degree 2
- a_4_3, a nilpotent element of degree 4
- a_6_4, a nilpotent element of degree 6
- b_8_9, an element of degree 8
- c_10_12, a Duflot regular element of degree 10
Ring relations
There are 3 "obvious" relations:
a_1_02, a_1_12, a_1_22
Apart from that, there are 19 minimal relations of maximal degree 16:
- b_2_4·a_1_0 − b_2_3·a_1_1
- a_4_3·a_1_1
- a_4_3·a_1_0
- b_2_3·a_4_3
- b_2_4·a_4_3
- a_6_4·a_1_1
- a_6_4·a_1_0
- a_4_32
- b_2_3·a_6_4
- b_2_4·a_6_4
- b_8_9·a_1_1 − 2·b_2_3·b_2_43·a_1_1 − b_2_32·b_2_42·a_1_1 + b_2_33·b_2_4·a_1_1
− b_2_34·a_1_1
- b_8_9·a_1_0 − b_2_3·b_2_43·a_1_1 − 2·b_2_32·b_2_42·a_1_1 − b_2_33·b_2_4·a_1_1
+ b_2_34·a_1_1
- a_4_3·a_6_4
- b_2_3·b_8_9 − b_2_3·b_2_44 − 2·b_2_32·b_2_43 − b_2_33·b_2_42 + b_2_34·b_2_4
- b_2_4·b_8_9 − 2·b_2_3·b_2_44 − b_2_32·b_2_43 + b_2_33·b_2_42 − b_2_34·b_2_4
- a_6_42
- a_4_3·b_8_9
- a_6_4·b_8_9
- b_8_92 + 2·b_2_34·b_2_44 − 2·b_2_35·b_2_43 − 2·b_2_36·b_2_42
− 2·b_2_37·b_2_4
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_10_12, a Duflot regular element of degree 10
- b_8_9 − b_2_44 − 2·b_2_3·b_2_43 − b_2_32·b_2_42 + b_2_33·b_2_4 − b_2_34, an element of degree 8
- The Raw Filter Degree Type of that HSOP is [-1, 7, 16].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 1 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → 0, an element of degree 8
- c_10_12 → c_2_05, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → c_2_2, an element of degree 2
- b_2_4 → 0, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → 0, an element of degree 8
- c_10_12 → − c_2_1·c_2_24 + c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → 0, an element of degree 8
- c_10_12 → − c_2_1·c_2_24 + c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → c_2_2, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → − 2·c_2_24, an element of degree 8
- c_10_12 → − c_2_1·c_2_24 + c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 2·a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → 2·c_2_2, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → c_2_24, an element of degree 8
- c_10_12 → − c_2_1·c_2_24 + c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 2·a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → c_2_2, an element of degree 2
- b_2_4 → 2·c_2_2, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → − c_2_24, an element of degree 8
- c_10_12 → − c_2_25 − c_2_1·c_2_24 + c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → − a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_3 → − c_2_2, an element of degree 2
- b_2_4 → c_2_2, an element of degree 2
- a_4_3 → 0, an element of degree 4
- a_6_4 → 0, an element of degree 6
- b_8_9 → c_2_24, an element of degree 8
- c_10_12 → − 2·c_2_25 − c_2_1·c_2_24 + c_2_15, an element of degree 10
|