Cohomology of group number 14 of order 625

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625


General information on the group

  • The group is also known as E125*C25, the Central product E125 * C_25.
  • The group has 3 minimal generators and exponent 25.
  • It is non-abelian.
  • It has p-Rank 2.
  • Its center has rank 1.
  • It has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 2 and depth 1.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (t2  +  t  +  1) · (t6  −  t5  +  t4  +  1)

    (t  −  1)2 · (t4  −  t3  +  t2  −  t  +  1) · (t4  +  t3  +  t2  +  t  +  1)

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625

Ring generators

The cohomology ring has 9 minimal generators of maximal degree 10:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. b_2_3, an element of degree 2
  5. b_2_4, an element of degree 2
  6. a_4_3, a nilpotent element of degree 4
  7. a_6_4, a nilpotent element of degree 6
  8. b_8_9, an element of degree 8
  9. c_10_12, a Duflot regular element of degree 10

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625

Ring relations

There are 3 "obvious" relations:
   a_1_02, a_1_12, a_1_22

Apart from that, there are 19 minimal relations of maximal degree 16:

  1. b_2_4·a_1_0 − b_2_3·a_1_1
  2. a_4_3·a_1_1
  3. a_4_3·a_1_0
  4. b_2_3·a_4_3
  5. b_2_4·a_4_3
  6. a_6_4·a_1_1
  7. a_6_4·a_1_0
  8. a_4_32
  9. b_2_3·a_6_4
  10. b_2_4·a_6_4
  11. b_8_9·a_1_1 − 2·b_2_3·b_2_43·a_1_1 − b_2_32·b_2_42·a_1_1 + b_2_33·b_2_4·a_1_1
       − b_2_34·a_1_1
  12. b_8_9·a_1_0 − b_2_3·b_2_43·a_1_1 − 2·b_2_32·b_2_42·a_1_1 − b_2_33·b_2_4·a_1_1
       + b_2_34·a_1_1
  13. a_4_3·a_6_4
  14. b_2_3·b_8_9 − b_2_3·b_2_44 − 2·b_2_32·b_2_43 − b_2_33·b_2_42 + b_2_34·b_2_4
  15. b_2_4·b_8_9 − 2·b_2_3·b_2_44 − b_2_32·b_2_43 + b_2_33·b_2_42 − b_2_34·b_2_4
  16. a_6_42
  17. a_4_3·b_8_9
  18. a_6_4·b_8_9
  19. b_8_92 + 2·b_2_34·b_2_44 − 2·b_2_35·b_2_43 − 2·b_2_36·b_2_42
       − 2·b_2_37·b_2_4


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_10_12, a Duflot regular element of degree 10
    2. b_8_9 − b_2_44 − 2·b_2_3·b_2_43 − b_2_32·b_2_42 + b_2_33·b_2_4 − b_2_34, an element of degree 8
  • The Raw Filter Degree Type of that HSOP is [-1, 7, 16].
  • The filter degree type of any filter regular HSOP is [-1, -2, -2].
  • We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 1 elements of degree 2.


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_30, an element of degree 2
  5. b_2_40, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_90, an element of degree 8
  9. c_10_12c_2_05, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_0a_1_1, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_3c_2_2, an element of degree 2
  5. b_2_40, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_90, an element of degree 8
  9. c_10_12 − c_2_1·c_2_24 + c_2_15, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_1a_1_1, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_30, an element of degree 2
  5. b_2_4c_2_2, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_90, an element of degree 8
  9. c_10_12 − c_2_1·c_2_24 + c_2_15, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_0a_1_1, an element of degree 1
  2. a_1_1a_1_1, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_3c_2_2, an element of degree 2
  5. b_2_4c_2_2, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_9 − 2·c_2_24, an element of degree 8
  9. c_10_12 − c_2_1·c_2_24 + c_2_15, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_02·a_1_1, an element of degree 1
  2. a_1_1a_1_1, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_32·c_2_2, an element of degree 2
  5. b_2_4c_2_2, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_9c_2_24, an element of degree 8
  9. c_10_12 − c_2_1·c_2_24 + c_2_15, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_0a_1_1, an element of degree 1
  2. a_1_12·a_1_1, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_3c_2_2, an element of degree 2
  5. b_2_42·c_2_2, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_9 − c_2_24, an element of degree 8
  9. c_10_12 − c_2_25 − c_2_1·c_2_24 + c_2_15, an element of degree 10

Restriction map to a maximal el. ab. subgp. of rank 2

  1. a_1_0 − a_1_1, an element of degree 1
  2. a_1_1a_1_1, an element of degree 1
  3. a_1_20, an element of degree 1
  4. b_2_3 − c_2_2, an element of degree 2
  5. b_2_4c_2_2, an element of degree 2
  6. a_4_30, an element of degree 4
  7. a_6_40, an element of degree 6
  8. b_8_9c_2_24, an element of degree 8
  9. c_10_12 − 2·c_2_25 − c_2_1·c_2_24 + c_2_15, an element of degree 10


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 625




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009