Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 3 of order 625
General information on the group
- The group has 2 minimal generators and exponent 25.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t2 + 1) |
| (t + 1) · (t − 1)3 · (t4 − t3 + t2 − t + 1) · (t4 + t3 + t2 + t + 1) |
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_4_4, a nilpotent element of degree 4
- a_5_9, a nilpotent element of degree 5
- a_6_7, a nilpotent element of degree 6
- a_7_13, a nilpotent element of degree 7
- a_8_10, a nilpotent element of degree 8
- a_9_17, a nilpotent element of degree 9
- a_10_13, a nilpotent element of degree 10
- c_10_19, a Duflot regular element of degree 10
Ring relations
There are 7 "obvious" relations:
a_1_02, a_1_12, a_3_42, a_3_52, a_5_92, a_7_132, a_9_172
Apart from that, there are 83 minimal relations of maximal degree 20:
- a_1_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_1 − 2·a_2_0·a_1_1
- a_2_1·a_1_0 − a_2_0·a_1_1
- b_2_2·a_1_0
- a_2_02
- a_2_12
- a_2_0·a_2_1
- − a_2_0·b_2_2 + a_1_1·a_3_4
- a_1_0·a_3_4
- − a_2_1·b_2_2 + a_2_0·b_2_2 + a_1_1·a_3_5
- 2·a_2_0·b_2_2 + a_1_0·a_3_5
- a_2_0·a_3_4
- b_2_2·a_3_4
- a_2_1·a_3_5 + 2·a_2_1·a_3_4
- − a_2_1·a_3_4 + a_2_0·a_3_5
- a_4_4·a_1_1 − a_2_1·a_3_4 + 2·a_2_0·c_2_3·a_1_1
- a_4_4·a_1_0
- a_2_1·a_4_4
- a_2_0·a_4_4
- b_2_2·a_4_4 + 2·a_3_4·a_3_5 − b_2_2·a_1_1·a_3_5 − c_2_3·a_1_0·a_3_5
- 2·a_3_4·a_3_5 + a_1_1·a_5_9 − c_2_3·a_1_0·a_3_5
- a_1_0·a_5_9
- a_4_4·a_3_4
- 2·a_4_4·a_3_5 + a_2_1·a_5_9 + a_2_0·c_2_3·a_3_5
- a_2_0·a_5_9
- b_2_2·a_5_9 − 2·b_2_22·c_2_3·a_1_1
- a_6_7·a_1_1 + 2·a_4_4·a_3_5 + a_2_0·c_2_3·a_3_5 − a_2_0·c_2_32·a_1_1
- a_6_7·a_1_0
- a_4_42
- a_3_4·a_5_9
- a_2_1·a_6_7
- a_2_0·a_6_7
- b_2_2·a_6_7 + a_3_5·a_5_9 + 2·b_2_22·a_1_1·a_3_5 − 2·c_2_3·a_1_1·a_5_9
- a_3_5·a_5_9 + a_1_1·a_7_13 + b_2_2·c_2_3·a_1_1·a_3_5 − 2·c_2_32·a_1_1·a_3_5
− 2·c_2_32·a_1_0·a_3_5
- a_1_0·a_7_13 − 2·c_2_32·a_1_0·a_3_5
- a_4_4·a_5_9
- a_6_7·a_3_4
- − 2·a_6_7·a_3_5 + a_2_1·a_7_13 + a_2_1·c_2_3·a_5_9 + 2·a_2_0·c_2_32·a_3_5
+ 2·a_2_0·c_2_33·a_1_1
- a_2_0·a_7_13 − 2·a_2_0·c_2_32·a_3_5 + a_2_0·c_2_33·a_1_1
- b_2_2·a_7_13 − b_2_22·c_2_3·a_3_5 + 2·b_2_23·c_2_3·a_1_1 − 2·b_2_2·c_2_32·a_3_5
− 2·b_2_22·c_2_32·a_1_1 + b_2_2·c_2_33·a_1_1
- a_8_10·a_1_1 − 2·a_6_7·a_3_5 + 2·a_2_1·c_2_3·a_5_9 − 2·a_2_0·c_2_32·a_3_5
+ 2·a_2_0·c_2_33·a_1_1
- a_8_10·a_1_0 + 2·a_2_0·c_2_33·a_1_1
- a_4_4·a_6_7
- a_3_4·a_7_13 + c_2_32·a_1_1·a_5_9 + 2·c_2_33·a_1_0·a_3_5
- a_3_5·a_7_13 + c_2_3·a_1_1·a_7_13 − 2·b_2_22·c_2_3·a_1_1·a_3_5 + c_2_32·a_1_1·a_5_9
+ b_2_2·c_2_32·a_1_1·a_3_5 + 2·c_2_33·a_1_1·a_3_5 + 2·c_2_33·a_1_0·a_3_5
- a_2_1·a_8_10
- a_2_0·a_8_10
- − b_2_2·a_8_10 − a_3_5·a_7_13 + a_1_1·a_9_17 − c_2_32·a_1_1·a_5_9
+ 2·c_2_33·a_1_1·a_3_5
- a_1_0·a_9_17 − 2·c_2_33·a_1_0·a_3_5
- a_6_7·a_5_9
- a_4_4·a_7_13 + a_2_1·c_2_32·a_5_9 + 2·a_2_0·c_2_33·a_3_5 − 2·a_2_0·c_2_34·a_1_1
- a_8_10·a_3_4 + 2·a_2_0·c_2_33·a_3_5
- a_8_10·a_3_5 + a_2_1·a_9_17 + a_2_1·c_2_3·a_7_13 + a_2_1·c_2_32·a_5_9
+ 2·a_2_0·c_2_34·a_1_1
- a_2_0·a_9_17 − 2·a_2_0·c_2_33·a_3_5
- a_10_13·a_1_1 + a_8_10·a_3_5 + a_2_1·c_2_3·a_7_13 − a_2_0·c_2_33·a_3_5
− 2·a_2_0·c_2_34·a_1_1
- a_10_13·a_1_0
- a_6_72
- 2·a_5_9·a_7_13 + c_2_32·a_1_1·a_7_13 + b_2_22·c_2_32·a_1_1·a_3_5
− 2·c_2_33·a_1_1·a_5_9 + b_2_2·c_2_33·a_1_1·a_3_5 − 2·c_2_34·a_1_1·a_3_5 − 2·c_2_34·a_1_0·a_3_5
- a_4_4·a_8_10
- a_3_4·a_9_17 + c_2_33·a_1_1·a_5_9 − c_2_34·a_1_0·a_3_5
- a_2_1·a_10_13
- a_2_0·a_10_13
- b_2_2·a_10_13 − 2·a_5_9·a_7_13 − a_3_5·a_9_17 + 2·b_2_24·a_1_1·a_3_5
+ c_2_3·a_1_1·a_9_17 + 2·b_2_23·c_2_3·a_1_1·a_3_5 + b_2_2·c_2_33·a_1_1·a_3_5 − 2·c_2_34·a_1_1·a_3_5 − 2·c_2_34·a_1_0·a_3_5
- a_6_7·a_7_13 − a_2_1·c_2_32·a_7_13 − 2·a_2_0·c_2_34·a_3_5 − a_2_0·c_2_35·a_1_1
- a_8_10·a_5_9 + 2·a_2_1·c_2_33·a_5_9
- − a_4_4·a_9_17 + a_1_1·a_3_5·a_9_17 − a_2_1·c_2_33·a_5_9 − a_2_0·c_2_34·a_3_5
- a_10_13·a_3_5 − a_2_1·c_2_3·a_9_17 − a_2_0·c_10_19·a_1_1 + a_2_1·c_2_33·a_5_9
+ 2·a_2_0·c_2_34·a_3_5
- a_10_13·a_3_4
- a_6_7·a_8_10
- 2·a_5_9·a_9_17 + b_2_2·c_2_3·a_1_1·a_9_17 + c_2_33·a_1_1·a_7_13
− b_2_2·c_2_34·a_1_1·a_3_5 − 2·c_2_35·a_1_1·a_3_5 − 2·c_2_35·a_1_0·a_3_5
- a_4_4·a_10_13
- − 2·a_8_10·a_7_13 − 2·c_2_3·a_1_1·a_3_5·a_9_17 + a_2_1·c_2_32·a_9_17
− 2·a_2_1·c_2_34·a_5_9 + a_2_0·c_2_35·a_3_5 − a_2_0·c_2_36·a_1_1
- a_6_7·a_9_17 + 2·b_2_2·a_1_1·a_3_5·a_9_17 − 2·c_2_3·a_1_1·a_3_5·a_9_17
− a_2_1·c_2_33·a_7_13 − a_2_1·c_2_34·a_5_9 − 2·a_2_0·c_2_35·a_3_5 − 2·a_2_0·c_2_36·a_1_1
- a_10_13·a_5_9 − 2·c_2_3·a_1_1·a_3_5·a_9_17
- a_8_102
- a_7_13·a_9_17 − b_2_2·c_2_3·a_3_5·a_9_17 + 2·b_2_22·c_2_3·a_1_1·a_9_17
− 2·c_2_32·a_3_5·a_9_17 − 2·b_2_2·c_2_32·a_1_1·a_9_17 + c_2_33·a_1_1·a_9_17 − 2·c_2_34·a_1_1·a_7_13 − 2·c_2_35·a_1_1·a_5_9 + 2·b_2_2·c_2_35·a_1_1·a_3_5 − c_2_36·a_1_1·a_3_5 + c_2_36·a_1_0·a_3_5
- a_6_7·a_10_13
- a_8_10·a_9_17 + 2·b_2_2·c_2_3·a_1_1·a_3_5·a_9_17 − 2·c_2_32·a_1_1·a_3_5·a_9_17
− a_2_1·c_2_33·a_9_17 + 2·a_2_1·c_2_34·a_7_13 + 2·a_2_1·c_2_35·a_5_9 − 2·a_2_0·c_2_36·a_3_5 − a_2_0·c_2_37·a_1_1
- a_10_13·a_7_13 + 2·b_2_2·c_2_3·a_1_1·a_3_5·a_9_17 + 2·c_2_32·a_1_1·a_3_5·a_9_17
− a_2_1·c_2_33·a_9_17 − 2·a_2_0·c_2_32·c_10_19·a_1_1 − 2·a_2_1·c_2_35·a_5_9 − a_2_0·c_2_37·a_1_1
- a_8_10·a_10_13
- a_10_13·a_9_17 + 2·b_2_23·a_1_1·a_3_5·a_9_17 + 2·b_2_22·c_2_3·a_1_1·a_3_5·a_9_17
+ b_2_2·c_2_32·a_1_1·a_3_5·a_9_17 − 2·c_2_33·a_1_1·a_3_5·a_9_17 − 2·a_2_1·c_2_34·a_9_17 − 2·a_2_0·c_2_33·c_10_19·a_1_1 + 2·a_2_1·c_2_36·a_5_9 − a_2_0·c_2_37·a_3_5
- a_10_132
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_10_19, a Duflot regular element of degree 10
- b_2_2, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_3 → c_2_2, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_5_9 → 0, an element of degree 5
- a_6_7 → 0, an element of degree 6
- a_7_13 → 0, an element of degree 7
- a_8_10 → 0, an element of degree 8
- a_9_17 → 0, an element of degree 9
- a_10_13 → 0, an element of degree 10
- c_10_19 → − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_2, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → a_1_0·a_1_2, an element of degree 2
- b_2_2 → c_2_5, an element of degree 2
- c_2_3 → c_2_4, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → − c_2_5·a_1_0 + c_2_3·a_1_2, an element of degree 3
- a_4_4 → c_2_5·a_1_0·a_1_2, an element of degree 4
- a_5_9 → 2·c_2_4·c_2_5·a_1_2, an element of degree 5
- a_6_7 → − 2·c_2_52·a_1_0·a_1_2 + 2·c_2_4·c_2_5·a_1_0·a_1_2, an element of degree 6
- a_7_13 → − 2·c_2_4·c_2_52·a_1_2 − c_2_4·c_2_52·a_1_0 + 2·c_2_42·c_2_5·a_1_2
− 2·c_2_42·c_2_5·a_1_0 − c_2_43·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_2 + 2·c_2_3·c_2_42·a_1_2, an element of degree 7
- a_8_10 → − c_2_53·a_1_1·a_1_2 + c_2_53·a_1_0·a_1_2 + 2·c_2_4·c_2_52·a_1_0·a_1_2
+ c_2_42·c_2_5·a_1_0·a_1_2 − 2·c_2_43·a_1_0·a_1_2, an element of degree 8
- a_9_17 → c_2_54·a_1_1 − c_2_54·a_1_0 + c_2_4·c_2_53·a_1_2 + c_2_4·c_2_53·a_1_0
+ 2·c_2_42·c_2_52·a_1_2 + c_2_42·c_2_52·a_1_0 − c_2_43·c_2_5·a_1_2 − 2·c_2_43·c_2_5·a_1_0 + c_2_3·c_2_53·a_1_2 − c_2_3·c_2_4·c_2_52·a_1_2 − c_2_3·c_2_42·c_2_5·a_1_2 + 2·c_2_3·c_2_43·a_1_2, an element of degree 9
- a_10_13 → − 2·c_2_54·a_1_0·a_1_2 − c_2_54·a_1_0·a_1_1 + c_2_4·c_2_53·a_1_1·a_1_2
+ c_2_4·c_2_53·a_1_0·a_1_2 − 2·c_2_42·c_2_52·a_1_0·a_1_2 − c_2_43·c_2_5·a_1_0·a_1_2 − c_2_3·c_2_53·a_1_1·a_1_2, an element of degree 10
- c_10_19 → c_2_54·a_1_0·a_1_2 − 2·c_2_54·a_1_0·a_1_1 − 2·c_2_4·c_2_53·a_1_0·a_1_2
− c_2_42·c_2_52·a_1_0·a_1_2 + c_2_43·c_2_5·a_1_0·a_1_2 + c_2_44·a_1_0·a_1_2 − 2·c_2_3·c_2_53·a_1_1·a_1_2 − 2·c_2_4·c_2_54 + c_2_42·c_2_53 − 2·c_2_43·c_2_52 − c_2_44·c_2_5 + c_2_3·c_2_54 − c_2_35, an element of degree 10
|