Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 48 of order 729
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 + t4 + 2·t3 + t2 + t + 1) |
| (t + 1)2 · (t − 1)3 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_0, an element of degree 2
- b_2_2, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_4_5, a nilpotent element of degree 4
- a_6_12, a nilpotent element of degree 6
- c_6_17, a Duflot regular element of degree 6
Ring relations
There are 5 "obvious" relations:
a_1_02, a_1_12, a_3_42, a_3_52, a_3_62
Apart from that, there are 36 minimal relations of maximal degree 12:
- a_1_0·a_1_1
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_0·a_1_1
- b_2_2·a_1_0
- a_2_12
- a_2_1·b_2_0
- a_2_1·b_2_2 + a_1_1·a_3_4
- b_2_0·b_2_2 + a_1_0·a_3_4
- a_1_1·a_3_5
- a_2_1·b_2_2 + a_1_0·a_3_5
- a_1_1·a_3_6
- b_2_2·a_3_4 − b_2_2·c_2_3·a_1_1
- a_2_1·a_3_4
- b_2_0·a_3_5 − b_2_0·c_2_3·a_1_0
- a_2_1·a_3_5
- a_2_1·a_3_6
- a_4_5·a_1_1
- a_4_5·a_1_0
- a_3_4·a_3_5 + c_2_3·a_1_0·a_3_4
- − a_3_5·a_3_6 + c_2_3·a_1_0·a_3_6
- b_2_0·a_4_5 − b_2_0·a_1_0·a_3_4
- a_2_1·a_4_5
- − b_2_22·a_3_6 + b_2_22·a_3_5 + a_4_5·a_3_6 − a_1_0·a_3_4·a_3_6 − b_2_22·c_2_3·a_1_1
- − b_2_22·a_3_6 + b_2_22·a_3_5 + a_4_5·a_3_5 − b_2_22·c_2_3·a_1_1
- a_4_5·a_3_4
- − b_2_22·a_3_6 + b_2_22·a_3_5 + a_6_12·a_1_1 − b_2_22·c_2_3·a_1_1
- a_6_12·a_1_0 + a_1_0·a_3_4·a_3_6
- a_4_52
- b_2_0·a_6_12 + b_2_0·a_3_4·a_3_6
- a_2_1·a_6_12
- a_6_12·a_3_6 + c_2_3·a_4_5·a_3_5
- a_6_12·a_3_5 + c_2_3·a_1_0·a_3_4·a_3_6
- a_6_12·a_3_4 − c_2_3·a_4_5·a_3_5
- a_4_5·a_6_12
- a_6_122
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_6_17, a Duflot regular element of degree 6
- b_2_22 + b_2_02 + a_2_1·b_2_2 + a_2_1·c_2_3, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- c_2_3 → − c_2_1, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- a_6_12 → 0, an element of degree 6
- c_6_17 → − c_2_23 − c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → a_1_2, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → c_2_5, an element of degree 2
- b_2_2 → a_1_1·a_1_2, an element of degree 2
- c_2_3 → − a_1_1·a_1_2 + a_1_0·a_1_2 − c_2_3, an element of degree 2
- a_3_4 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_5 → − c_2_3·a_1_2, an element of degree 3
- a_3_6 → − c_2_5·a_1_0, an element of degree 3
- a_4_5 → − c_2_5·a_1_1·a_1_2, an element of degree 4
- a_6_12 → − c_2_52·a_1_0·a_1_1 + c_2_4·c_2_5·a_1_0·a_1_2, an element of degree 6
- c_6_17 → − c_2_52·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2 + c_2_3·c_2_5·a_1_0·a_1_2
− c_2_32·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43 + c_2_3·c_2_52 − c_2_33, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → c_2_5, an element of degree 2
- c_2_3 → − c_2_5 − c_2_3, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- a_6_12 → 0, an element of degree 6
- c_6_17 → − c_2_53 + c_2_4·c_2_52 − c_2_43 + c_2_3·c_2_52 − c_2_32·c_2_5 − c_2_33, an element of degree 6
|