Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 10 of order 81
General information on the group
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t3 − t2 − 1) |
| (t − 1)2 · (t2 − t + 1) · (t2 + t + 1) |
- The a-invariants are -∞,-2,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_4_1, an element of degree 4
- a_5_1, a nilpotent element of degree 5
- b_6_1, an element of degree 6
- c_6_2, a Duflot regular element of degree 6
- a_7_3, a nilpotent element of degree 7
Ring relations
There are 5 "obvious" relations:
a_1_02, a_1_12, a_3_22, a_5_12, a_7_32
Apart from that, there are 39 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_0 − a_2_0·a_1_1
- a_2_2·a_1_1 + a_2_1·a_1_1 − a_2_0·a_1_1
- a_2_2·a_1_0 − a_2_1·a_1_1 + a_2_0·a_1_1
- a_2_02
- a_2_0·a_2_1
- a_2_22 + a_2_12
- − a_2_12 + a_2_0·a_2_2
- a_2_1·a_2_2 + a_2_12
- a_1_1·a_3_2 − a_2_12
- a_1_0·a_3_2
- a_2_2·a_3_2
- a_2_0·a_3_2
- a_2_1·a_3_2
- b_4_1·a_1_0
- a_2_0·b_4_1
- a_2_1·b_4_1
- − a_2_2·b_4_1 + a_1_1·a_5_1
- a_1_0·a_5_1
- a_2_2·a_5_1
- a_2_0·a_5_1
- a_2_1·a_5_1
- b_6_1·a_1_1 + b_4_1·a_3_2
- b_6_1·a_1_0
- a_2_2·b_6_1 + a_3_2·a_5_1
- a_2_0·b_6_1
- a_2_1·b_6_1
- a_3_2·a_5_1 + a_1_1·a_7_3
- a_1_0·a_7_3
- b_6_1·a_3_2 − b_4_12·a_1_1
- a_2_2·a_7_3
- a_2_0·a_7_3
- a_2_1·a_7_3
- a_3_2·a_7_3 − b_4_1·a_1_1·a_5_1
- − b_6_1·a_5_1 + b_4_1·a_7_3 − b_4_12·a_3_2
- b_6_12 + b_4_13 + a_5_1·a_7_3
- b_6_12 + b_4_13 + b_4_1·a_1_1·a_7_3
- b_6_1·a_7_3 + b_4_12·a_5_1 − b_4_13·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_2, a Duflot regular element of degree 6
- − b_4_1, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, 4, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_4_1 → 0, an element of degree 4
- a_5_1 → 0, an element of degree 5
- b_6_1 → 0, an element of degree 6
- c_6_2 → − c_2_03, an element of degree 6
- a_7_3 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_4_1 → − c_2_22, an element of degree 4
- a_5_1 → c_2_22·a_1_1, an element of degree 5
- b_6_1 → c_2_23, an element of degree 6
- c_6_2 → c_2_1·c_2_22 − c_2_13, an element of degree 6
- a_7_3 → − c_2_23·a_1_1, an element of degree 7
|