Cohomology of group number 12 of order 81

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81


General information on the group

  • The group is also known as E27xC3, the Direct product E27 x C_3.
  • The group has 3 minimal generators and exponent 3.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 3.
  • The depth exceeds the Duflot bound, which is 2.
  • The Poincaré series is
    ( − 1) · (t2  +  1)2

    (t  −  1)3 · (t2  −  t  +  1) · (t2  +  t  +  1)
  • The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81

Ring generators

The cohomology ring has 11 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. b_2_2, an element of degree 2
  5. b_2_3, an element of degree 2
  6. b_2_4, an element of degree 2
  7. b_2_5, an element of degree 2
  8. c_2_6, a Duflot regular element of degree 2
  9. a_3_11, a nilpotent element of degree 3
  10. a_3_12, a nilpotent element of degree 3
  11. c_6_36, a Duflot regular element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81

Ring relations

There are 5 "obvious" relations:
   a_1_02, a_1_12, a_1_22, a_3_112, a_3_122

Apart from that, there are 17 minimal relations of maximal degree 6:

  1. a_1_0·a_1_1
  2. b_2_3·a_1_0 − b_2_2·a_1_1
  3. b_2_4·a_1_1 + b_2_3·a_1_1 − b_2_2·a_1_1
  4. b_2_4·a_1_0 − b_2_3·a_1_1 + b_2_2·a_1_1
  5. b_2_5·a_1_0 − b_2_2·a_1_1
  6.  − b_2_32 + b_2_2·b_2_4 + b_2_2·b_2_3
  7.  − b_2_42 + b_2_3·b_2_5 + b_2_3·b_2_4 − b_2_32
  8.  − b_2_3·b_2_4 − b_2_32 + b_2_2·b_2_5
  9.  − b_2_42 + b_2_3·b_2_4 + a_1_1·a_3_11
  10.  − b_2_3·b_2_4 − b_2_32 + b_2_2·b_2_3 + a_1_0·a_3_11
  11.  − b_2_4·b_2_5 + b_2_42 + a_1_1·a_3_12
  12.  − b_2_42 − b_2_32 + b_2_2·b_2_3 + a_1_0·a_3_12
  13. b_2_5·a_3_11 − b_2_3·a_3_11
  14.  − b_2_4·a_3_11 + b_2_3·a_3_12 + b_2_3·a_3_11 + b_2_2·b_2_3·a_1_1 − b_2_22·a_1_1
  15.  − b_2_3·a_3_11 + b_2_2·a_3_12 − b_2_2·a_3_11 − b_2_2·b_2_3·a_1_1 + b_2_22·a_1_1
  16. b_2_4·a_3_12 + b_2_2·b_2_3·a_1_1 − b_2_22·a_1_1
  17. a_3_11·a_3_12 + b_2_2·a_1_1·a_3_12 + b_2_2·a_1_0·a_3_12 − b_2_2·a_1_0·a_3_11


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 7.
  • However, the last relation was already found in degree 6 and the last generator in degree 6.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_6, a Duflot regular element of degree 2
    2. c_6_36, a Duflot regular element of degree 6
    3. b_2_52 − b_2_3·b_2_5 + b_2_2·b_2_5 − b_2_2·b_2_3 + b_2_22, an element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
  • We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 1 elements of degree 2.


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_2a_1_0, an element of degree 1
  4. b_2_20, an element of degree 2
  5. b_2_30, an element of degree 2
  6. b_2_40, an element of degree 2
  7. b_2_50, an element of degree 2
  8. c_2_6c_2_1, an element of degree 2
  9. a_3_110, an element of degree 3
  10. a_3_120, an element of degree 3
  11. c_6_36 − c_2_23, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_0a_1_2, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_2a_1_0, an element of degree 1
  4. b_2_2c_2_5, an element of degree 2
  5. b_2_3 − a_1_1·a_1_2, an element of degree 2
  6. b_2_4a_1_1·a_1_2, an element of degree 2
  7. b_2_50, an element of degree 2
  8. c_2_6c_2_3, an element of degree 2
  9. a_3_11 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
  10. a_3_12 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
  11. c_6_36 − c_2_52·a_1_1·a_1_2 + c_2_4·c_2_52 − c_2_43, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_1a_1_2, an element of degree 1
  3. a_1_2a_1_0, an element of degree 1
  4. b_2_20, an element of degree 2
  5. b_2_30, an element of degree 2
  6. b_2_4a_1_1·a_1_2, an element of degree 2
  7. b_2_5c_2_5, an element of degree 2
  8. c_2_6c_2_3, an element of degree 2
  9. a_3_110, an element of degree 3
  10. a_3_12 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
  11. c_6_36c_2_4·c_2_52 − c_2_43, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_0a_1_2, an element of degree 1
  2. a_1_1a_1_2, an element of degree 1
  3. a_1_2a_1_0, an element of degree 1
  4. b_2_2c_2_5, an element of degree 2
  5. b_2_3 − a_1_1·a_1_2 + c_2_5, an element of degree 2
  6. b_2_4 − a_1_1·a_1_2, an element of degree 2
  7. b_2_5c_2_5, an element of degree 2
  8. c_2_6c_2_3, an element of degree 2
  9. a_3_11 − c_2_5·a_1_1 + c_2_4·a_1_2, an element of degree 3
  10. a_3_12c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
  11. c_6_36c_2_4·c_2_52 − c_2_43, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_0 − a_1_2, an element of degree 1
  2. a_1_1a_1_2, an element of degree 1
  3. a_1_2a_1_0, an element of degree 1
  4. b_2_2 − c_2_5, an element of degree 2
  5. b_2_3a_1_1·a_1_2 + c_2_5, an element of degree 2
  6. b_2_4c_2_5, an element of degree 2
  7. b_2_5c_2_5, an element of degree 2
  8. c_2_6c_2_3, an element of degree 2
  9. a_3_11c_2_5·a_1_2 + c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
  10. a_3_12 − c_2_5·a_1_2, an element of degree 3
  11. c_6_36c_2_52·a_1_1·a_1_2 + c_2_53 + c_2_4·c_2_52 − c_2_43, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 81




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009